Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nonconvex landscapes for $\mathbf{Z}_2$ synchronization and graph clustering are benign near exact recovery thresholds (2407.13407v1)

Published 18 Jul 2024 in math.OC, math.ST, and stat.TH

Abstract: We study the optimization landscape of a smooth nonconvex program arising from synchronization over the two-element group $\mathbf{Z}2$, that is, recovering $z_1, \dots, z_n \in {\pm 1}$ from (noisy) relative measurements $R{ij} \approx z_i z_j$. Starting from a max-cut--like combinatorial problem, for integer parameter $r \geq 2$, the nonconvex problem we study can be viewed both as a rank-$r$ Burer--Monteiro factorization of the standard max-cut semidefinite relaxation and as a relaxation of ${ \pm 1 }$ to the unit sphere in $\mathbf{R}r$. First, we present deterministic, non-asymptotic conditions on the measurement graph and noise under which every second-order critical point of the nonconvex problem yields exact recovery of the ground truth. Then, via probabilistic analysis, we obtain asymptotic guarantees for three benchmark problems: (1) synchronization with a complete graph and Gaussian noise, (2) synchronization with an Erd\H{o}s--R\'enyi random graph and Bernoulli noise, and (3) graph clustering under the binary symmetric stochastic block model. In each case, we have, asymptotically as the problem size goes to infinity, a benign nonconvex landscape near a previously-established optimal threshold for exact recovery; we can approach this threshold to arbitrary precision with large enough (but finite) rank parameter $r$. In addition, our results are robust to monotone adversaries.

Citations (1)

Summary

We haven't generated a summary for this paper yet.