Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-Contact Breath Rate Classification Using SVM Model and mmWave Radar Sensor Data (2407.13222v1)

Published 18 Jul 2024 in cs.LG

Abstract: This work presents the use of frequency modulated continuous wave (FMCW) radar technology combined with a machine learning model to differentiate between normal and abnormal breath rates. The proposed system non-contactly collects data using FMCW radar, which depends on breath rates. Various support vector machine kernels are used to classify the observed data into normal and abnormal states. Prolonged experiments show good accuracy in breath rate classification, confirming the model's efficacy. The best accuracy is 95 percent with the smallest number of support vectors in the case of the quadratic polynomial kernel.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets