Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graph-theoretical estimates of the diameters of the Rubik's Cube groups (2407.12961v4)

Published 17 Jul 2024 in math.CO, cs.DM, math.GR, and math.PR

Abstract: A strict lower bound for the diameter of a symmetric graph is proposed, which is calculable with the order $n$ and other local parameters of the graph such as the degree $k\,(\geq 3)$, even girth $g\,(\geq 4)$, and number of $g$-cycles traversing a vertex, which are easily determined by inspecting a small portion of the graph (unless the girth is large). It is applied to the symmetric Cayley graphs of some Rubik's Cube groups of various sizes and metrics, yielding slightly tighter lower bounds of the diameters than those for random $k$-regular graphs proposed by Bollob\'{a}s and de la Vega. They range from 60% to 77% of the correct diameters of large-$n$ graphs.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com