Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mutual Information Guided Optimal Transport for Unsupervised Visible-Infrared Person Re-identification (2407.12758v1)

Published 17 Jul 2024 in cs.CV

Abstract: Unsupervised visible infrared person re-identification (USVI-ReID) is a challenging retrieval task that aims to retrieve cross-modality pedestrian images without using any label information. In this task, the large cross-modality variance makes it difficult to generate reliable cross-modality labels, and the lack of annotations also provides additional difficulties for learning modality-invariant features. In this paper, we first deduce an optimization objective for unsupervised VI-ReID based on the mutual information between the model's cross-modality input and output. With equivalent derivation, three learning principles, i.e., "Sharpness" (entropy minimization), "Fairness" (uniform label distribution), and "Fitness" (reliable cross-modality matching) are obtained. Under their guidance, we design a loop iterative training strategy alternating between model training and cross-modality matching. In the matching stage, a uniform prior guided optimal transport assignment ("Fitness", "Fairness") is proposed to select matched visible and infrared prototypes. In the training stage, we utilize this matching information to introduce prototype-based contrastive learning for minimizing the intra- and cross-modality entropy ("Sharpness"). Extensive experimental results on benchmarks demonstrate the effectiveness of our method, e.g., 60.6% and 90.3% of Rank-1 accuracy on SYSU-MM01 and RegDB without any annotations.

Summary

We haven't generated a summary for this paper yet.