Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Comparing Federated Stochastic Gradient Descent and Federated Averaging for Predicting Hospital Length of Stay (2407.12741v1)

Published 17 Jul 2024 in cs.LG

Abstract: Predicting hospital length of stay (LOS) reliably is an essential need for efficient resource allocation at hospitals. Traditional predictive modeling tools frequently have difficulty acquiring sufficient and diverse data because healthcare institutions have privacy rules in place. In our study, we modeled this problem as an empirical graph where nodes are the hospitals. This modeling approach facilitates collaborative model training by modeling decentralized data sources from different hospitals without extracting sensitive data outside of hospitals. A local model is trained on a node (hospital) by aiming the generalized total variation minimization (GTVMin). Moreover, we implemented and compared two different federated learning optimization algorithms named federated stochastic gradient descent (FedSGD) and federated averaging (FedAVG). Our results show that federated learning enables accurate prediction of hospital LOS while addressing privacy concerns without extracting data outside healthcare institutions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Mehmet Yigit Balik (2 papers)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets