Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Unifying Post-Processing Framework for Multi-Objective Learn-to-Defer Problems (2407.12710v1)

Published 17 Jul 2024 in cs.LG and cs.AI

Abstract: Learn-to-Defer is a paradigm that enables learning algorithms to work not in isolation but as a team with human experts. In this paradigm, we permit the system to defer a subset of its tasks to the expert. Although there are currently systems that follow this paradigm and are designed to optimize the accuracy of the final human-AI team, the general methodology for developing such systems under a set of constraints (e.g., algorithmic fairness, expert intervention budget, defer of anomaly, etc.) remains largely unexplored. In this paper, using a $d$-dimensional generalization to the fundamental lemma of Neyman and Pearson (d-GNP), we obtain the Bayes optimal solution for learn-to-defer systems under various constraints. Furthermore, we design a generalizable algorithm to estimate that solution and apply this algorithm to the COMPAS and ACSIncome datasets. Our algorithm shows improvements in terms of constraint violation over a set of baselines.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Mohammad-Amin Charusaie (5 papers)
  2. Samira Samadi (16 papers)
Citations (1)