Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Commuting families of polygonal type operators on Hilbert space (2407.12321v2)

Published 17 Jul 2024 in math.FA

Abstract: Let $T\colon H\to H$ be a bounded operator on Hilbert space. We say that $T$ has a polygonal type if there exists an open convex polygon $\Delta\subset {\mathbb D}$, with $\overline{\Delta}\cap{\mathbb T}\neq\emptyset$, such that the spectrum $\sigma(T)$ is included in $\overline{\Delta}$ and the resolvent $R(z,T)$ satisfies an estimate $\Vert R(z,T)\Vert \lesssim \max{\vert z-\xi\vert{-1}\, :\, \xi\in \overline{\Delta}\cap{\mathbb T}}$ for $z\in\overline{\mathbb D}c$. The class of polygonal type operators (which goes back to De Laubenfels and Franks-McIntosh) contains the class of Ritt operators. Let $T_1,\ldots,T_d$ be commuting operators on $H$, with $d\geq 3$. We prove functional calculus properties of the $d$-tuple $(T_1,\ldots,T_d)$ under various assumptions involving poygonal type. The main ones are the following. (1) If the $T_k$ are contractions for all $k=1,\ldots,d$ and if $T_1,\ldots,T_{d-2}$ have a polygonal type, then $(T_1,\ldots,T_d)$ satisfies a generalized von Neumann inequality $\Vert \phi(T_1,\ldots,T_d)\Vert \leq C\Vert\phi\Vert_{\infty,{\mathbb D}d}$ for polynomials $\phi$ in $d$ variables; (2) If $T_k$ is polynomially bounded with a polygonal type for all $k=1,\ldots,d$, then there exists an invertible operator $S\colon H\to H$ such that $\Vert S{-1}T_kS\Vert \leq 1$ for all $k=1,\ldots,d$.

Summary

We haven't generated a summary for this paper yet.