Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Safe and Data-efficient Model-based Reinforcement Learning System for HVAC Control (2407.12195v2)

Published 16 Jul 2024 in eess.SY and cs.SY

Abstract: Model-Based Reinforcement Learning (MBRL) has been widely studied for Heating, Ventilation, and Air Conditioning (HVAC) control in buildings. One of the critical challenges is the large amount of data required to effectively train neural networks for modeling building dynamics. This paper presents CLUE, an MBRL system for HVAC control in buildings. CLUE optimizes HVAC operations by integrating a Gaussian Process (GP) model to model building dynamics with uncertainty awareness. CLUE utilizes GP to predict state transitions as Gaussian distributions, effectively capturing prediction uncertainty and enhancing decision-making under sparse data conditions. Our approach employs a meta-kernel learning technique to efficiently set GP kernel hyperparameters using domain knowledge from diverse buildings. This drastically reduces the data requirements typically associated with GP models in HVAC applications. Additionally, CLUE incorporates these uncertainty estimates into a Model Predictive Path Integral (MPPI) algorithm, enabling the selection of safe, energy-efficient control actions. This uncertainty-aware control strategy evaluates and selects action trajectories based on their predicted impact on energy consumption and human comfort, optimizing operations even under uncertain conditions. Extensive simulations in a five-zone office building demonstrate that CLUE reduces the required training data from hundreds of days to just seven while maintaining robust control performance. It reduces comfort violations by an average of 12.07% compared to existing MBRL methods, without compromising on energy efficiency.

Citations (10)

Summary

We haven't generated a summary for this paper yet.