Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Benchmark for Fairness-Aware Graph Learning (2407.12112v1)

Published 16 Jul 2024 in cs.LG, cs.CY, and cs.SI

Abstract: Fairness-aware graph learning has gained increasing attention in recent years. Nevertheless, there lacks a comprehensive benchmark to evaluate and compare different fairness-aware graph learning methods, which blocks practitioners from choosing appropriate ones for broader real-world applications. In this paper, we present an extensive benchmark on ten representative fairness-aware graph learning methods. Specifically, we design a systematic evaluation protocol and conduct experiments on seven real-world datasets to evaluate these methods from multiple perspectives, including group fairness, individual fairness, the balance between different fairness criteria, and computational efficiency. Our in-depth analysis reveals key insights into the strengths and limitations of existing methods. Additionally, we provide practical guidance for applying fairness-aware graph learning methods in applications. To the best of our knowledge, this work serves as an initial step towards comprehensively understanding representative fairness-aware graph learning methods to facilitate future advancements in this area.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com