Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ascend-CC: Confidential Computing on Heterogeneous NPU for Emerging Generative AI Workloads (2407.11888v1)

Published 16 Jul 2024 in cs.CR

Abstract: Cloud workloads have dominated generative AI based on LLMs (LLM). Specialized hardware accelerators, such as GPUs, NPUs, and TPUs, play a key role in AI adoption due to their superior performance over general-purpose CPUs. The AI models and the data are often highly sensitive and come from mutually distrusting parties. Existing CPU-based TEEs such as Intel SGX or AMD SEV do not provide sufficient protection. Device-centric TEEs like Nvidia-CC only address tightly coupled CPU-GPU systems with a proprietary solution requiring TEE on the host CPU side. On the other hand, existing academic proposals are tailored toward specific CPU-TEE platforms. To address this gap, we propose Ascend-CC, a confidential computing architecture based on discrete NPU devices that requires no trust in the host system. Ascend-CC provides strong security by ensuring data and model encryption that protects not only the data but also the model parameters and operator binaries. Ascend-CC uses delegation-based memory semantics to ensure isolation from the host software stack, and task attestation provides strong model integrity guarantees. Our Ascend-CC implementation and evaluation with state-of-the-art LLMs such as Llama2 and Llama3 shows that Ascend-CC introduces minimal overhead with no changes in the AI software stack.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com