Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rethinking Learned Image Compression: Context is All You Need (2407.11590v3)

Published 16 Jul 2024 in eess.IV and cs.CV

Abstract: Since LIC has made rapid progress recently compared to traditional methods, this paper attempts to discuss the question about 'Where is the boundary of Learned Image Compression(LIC)?'. Thus this paper splits the above problem into two sub-problems:1)Where is the boundary of rate-distortion performance of PSNR? 2)How to further improve the compression gain and achieve the boundary? Therefore this paper analyzes the effectiveness of scaling parameters for encoder, decoder and context model, which are the three components of LIC. Then we conclude that scaling for LIC is to scale for context model and decoder within LIC. Extensive experiments demonstrate that overfitting can actually serve as an effective context. By optimizing the context, this paper further improves PSNR and achieves state-of-the-art performance, showing a performance gain of 14.39% with BD-RATE over VVC.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Jixiang Luo (12 papers)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com