Optical Diffusion Models for Image Generation (2407.10897v2)
Abstract: Diffusion models generate new samples by progressively decreasing the noise from the initially provided random distribution. This inference procedure generally utilizes a trained neural network numerous times to obtain the final output, creating significant latency and energy consumption on digital electronic hardware such as GPUs. In this study, we demonstrate that the propagation of a light beam through a semi-transparent medium can be programmed to implement a denoising diffusion model on image samples. This framework projects noisy image patterns through passive diffractive optical layers, which collectively only transmit the predicted noise term in the image. The optical transparent layers, which are trained with an online training approach, backpropagating the error to the analytical model of the system, are passive and kept the same across different steps of denoising. Hence this method enables high-speed image generation with minimal power consumption, benefiting from the bandwidth and energy efficiency of optical information processing.
- J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep Unsupervised Learning using Nonequilibrium Thermodynamics,” in Proceedings of the 32nd International Conference on Machine Learning. PMLR, Jun. 2015, pp. 2256–2265, iSSN: 1938-7228. [Online]. Available: https://proceedings.mlr.press/v37/sohl-dickstein15.html
- J. Ho, A. Jain, and P. Abbeel, “Denoising Diffusion Probabilistic Models,” in Advances in Neural Information Processing Systems, vol. 33. Curran Associates, Inc., 2020, pp. 6840–6851. [Online]. Available: https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html
- Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, “Score-Based Generative Modeling through Stochastic Differential Equations,” Oct. 2020. [Online]. Available: https://openreview.net/forum?id=PxTIG12RRHS&utm_campaign=NLP%20News&utm_medium=email&utm_source=Revue%20newsletter
- A. Q. Nichol and P. Dhariwal, “Improved Denoising Diffusion Probabilistic Models,” in Proceedings of the 38th International Conference on Machine Learning. PMLR, Jul. 2021, pp. 8162–8171, iSSN: 2640-3498. [Online]. Available: https://proceedings.mlr.press/v139/nichol21a.html
- A. Jalal, M. Arvinte, G. Daras, E. Price, A. Dimakis, and J. Tamir, “Robust Compressed Sensing MRI with Deep Generative Priors,” Nov. 2021. [Online]. Available: https://openreview.net/forum?id=wHoIjrT6MMb
- R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-Resolution Image Synthesis with Latent Diffusion Models,” in 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, LA, USA: IEEE, Jun. 2022, pp. 10 674–10 685. [Online]. Available: https://ieeexplore.ieee.org/document/9878449/
- C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. Denton, S. K. S. Ghasemipour, R. Gontijo-Lopes, B. K. Ayan, T. Salimans, J. Ho, D. J. Fleet, and M. Norouzi, “Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding,” Oct. 2022. [Online]. Available: https://openreview.net/forum?id=08Yk-n5l2Al
- C. Saharia, J. Ho, W. Chan, T. Salimans, D. J. Fleet, and M. Norouzi, “Image Super-Resolution via Iterative Refinement,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 4, pp. 4713–4726, Apr. 2023, conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence. [Online]. Available: https://ieeexplore.ieee.org/document/9887996
- S. Küfeoğlu and M. Özkuran, “Bitcoin mining: A global review of energy and power demand,” Energy Research & Social Science, vol. 58, p. 101273, Dec. 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2214629619305948
- C. E. Leiserson, N. C. Thompson, J. S. Emer, B. C. Kuszmaul, B. W. Lampson, D. Sanchez, and T. B. Schardl, “There’s plenty of room at the Top: What will drive computer performance after Moore’s law?” Science, vol. 368, no. 6495, p. eaam9744, Jun. 2020, publisher: American Association for the Advancement of Science. [Online]. Available: https://www.science.org/doi/10.1126/science.aam9744
- G. Wetzstein, A. Ozcan, S. Gigan, S. Fan, D. Englund, M. Soljačić, C. Denz, D. A. B. Miller, and D. Psaltis, “Inference in artificial intelligence with deep optics and photonics,” Nature 2020 588:7836, vol. 588, no. 7836, pp. 39–47, Dec. 2020, 101 citations (Semantic Scholar/DOI) [2022-01-23] Publisher: Nature Publishing Group. [Online]. Available: https://www.nature.com/articles/s41586-020-2973-6
- P. L. McMahon, “The physics of optical computing,” Nature Reviews Physics, vol. 5, no. 12, pp. 717–734, Dec. 2023, publisher: Nature Publishing Group. [Online]. Available: https://www.nature.com/articles/s42254-023-00645-5
- P. Dhariwal and A. Q. Nichol, “Diffusion Models Beat GANs on Image Synthesis,” Nov. 2021. [Online]. Available: https://openreview.net/forum?id=AAWuCvzaVt
- A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, “Hierarchical Text-Conditional Image Generation with CLIP Latents,” Apr. 2022. [Online]. Available: https://arxiv.org/abs/2204.06125v1
- J. Song, C. Meng, and S. Ermon, “Denoising Diffusion Implicit Models,” Oct. 2020. [Online]. Available: https://openreview.net/forum?id=St1giarCHLP
- Z. Kong and W. Ping, “On Fast Sampling of Diffusion Probabilistic Models,” Jun. 2021, arXiv:2106.00132 [cs]. [Online]. Available: http://arxiv.org/abs/2106.00132
- T. Salimans and J. Ho, “Progressive Distillation for Fast Sampling of Diffusion Models,” Jun. 2022, arXiv:2202.00512 [cs, stat]. [Online]. Available: http://arxiv.org/abs/2202.00512
- M. G. Anderson, S.-Y. Ma, T. Wang, L. G. Wright, and P. L. McMahon, “Optical Transformers,” Feb. 2023, arXiv:2302.10360 [physics]. [Online]. Available: http://arxiv.org/abs/2302.10360
- T. Zhou, X. Lin, J. Wu, Y. Chen, H. Xie, Y. Li, J. Fan, H. Wu, L. Fang, and Q. Dai, “Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit,” Nature Photonics, vol. 15, no. 5, pp. 367–373, May 2021, number: 5 Publisher: Nature Publishing Group. [Online]. Available: https://www.nature.com/articles/s41566-021-00796-w
- X. Lin, Y. Rivenson, N. T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, and A. Ozcan, “All-optical machine learning using diffractive deep neural networks,” Science, vol. 361, no. 6406, pp. 1004–1008, Sep. 2018.
- J. Hu, D. Mengu, D. C. Tzarouchis, B. Edwards, N. Engheta, and A. Ozcan, “Diffractive optical computing in free space,” Nature Communications, vol. 15, no. 1, p. 1525, Feb. 2024, publisher: Nature Publishing Group. [Online]. Available: https://www.nature.com/articles/s41467-024-45982-w
- C. Isil, D. Mengu, Y. Zhao, A. Tabassum, J. Li, Y. Luo, M. Jarrahi, and A. Ozcan, “Super-resolution image display using diffractive decoders,” Science Advances, vol. 8, no. 48, p. eadd3433, Dec. 2022, publisher: American Association for the Advancement of Science. [Online]. Available: https://www.science.org/doi/10.1126/sciadv.add3433
- C. Isil, T. Gan, F. O. Ardic, K. Mentesoglu, J. Digani, H. Karaca, H. Chen, J. Li, D. Mengu, M. Jarrahi, K. Akşit, and A. Ozcan, “All-optical image denoising using a diffractive visual processor,” Light: Science & Applications, vol. 13, no. 1, p. 43, Feb. 2024, publisher: Nature Publishing Group. [Online]. Available: https://www.nature.com/articles/s41377-024-01385-6
- J. Chang, V. Sitzmann, X. Dun, W. Heidrich, and G. Wetzstein, “Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification,” Scientific Reports, vol. 8, no. 1, p. 12324, Aug. 2018, number: 1 Publisher: Nature Publishing Group. [Online]. Available: https://www.nature.com/articles/s41598-018-30619-y
- Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljacic, “Deep learning with coherent nanophotonic circuits,” Nature Photonics, vol. 11, no. 7, pp. 441–446, Jun. 2017, 925 citations (Semantic Scholar/DOI) [2022-01-23] Publisher: Nature Publishing Group _eprint: 1610.02365.
- A. N. Tait, T. Ferreira de Lima, M. A. Nahmias, H. B. Miller, H.-T. Peng, B. J. Shastri, and P. R. Prucnal, “Silicon Photonic Modulator Neuron,” Physical Review Applied, vol. 11, no. 6, p. 064043, Jun. 2019, publisher: American Physical Society. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevApplied.11.064043
- L. G. Wright, T. Onodera, M. M. Stein, T. Wang, D. T. Schachter, Z. Hu, and P. L. McMahon, “Deep physical neural networks trained with backpropagation,” Nature, vol. 601, no. 7894, pp. 549–555, Jan. 2022, number: 7894 Publisher: Nature Publishing Group. [Online]. Available: https://www.nature.com/articles/s41586-021-04223-6
- U. S. Kamilov, I. N. Papadopoulos, M. H. Shoreh, A. Goy, C. Vonesch, M. Unser, and D. Psaltis, “Learning approach to optical tomography,” Optica, vol. 2, no. 6, pp. 517–522, Jun. 2015, publisher: Optica Publishing Group. [Online]. Available: https://opg.optica.org/optica/abstract.cfm?uri=optica-2-6-517
- A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in PyTorch,” Oct. 2017. [Online]. Available: https://openreview.net/forum?id=BJJsrmfCZ
- C. L. Panuski, I. Christen, M. Minkov, C. J. Brabec, S. Trajtenberg-Mills, A. D. Griffiths, J. J. D. McKendry, G. L. Leake, D. J. Coleman, C. Tran, J. St Louis, J. Mucci, C. Horvath, J. N. Westwood-Bachman, S. F. Preble, M. D. Dawson, M. J. Strain, M. L. Fanto, and D. R. Englund, “A full degree-of-freedom spatiotemporal light modulator,” Nature Photonics, vol. 16, no. 12, pp. 834–842, Dec. 2022, publisher: Nature Publishing Group. [Online]. Available: https://www.nature.com/articles/s41566-022-01086-9
- Ilker Oguz (11 papers)
- Niyazi Ulas Dinc (12 papers)
- Mustafa Yildirim (16 papers)
- Junjie Ke (13 papers)
- Innfarn Yoo (7 papers)
- Qifei Wang (18 papers)
- Feng Yang (147 papers)
- Christophe Moser (44 papers)
- Demetri Psaltis (47 papers)