Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Expanding the Scope: Inductive Knowledge Graph Reasoning with Multi-Starting Progressive Propagation (2407.10430v1)

Published 15 Jul 2024 in cs.CL and cs.AI

Abstract: Knowledge graphs (KGs) are widely acknowledged as incomplete, and new entities are constantly emerging in the real world. Inductive KG reasoning aims to predict missing facts for these new entities. Among existing models, graph neural networks (GNNs) based ones have shown promising performance for this task. However, they are still challenged by inefficient message propagation due to the distance and scalability issues. In this paper, we propose a new inductive KG reasoning model, MStar, by leveraging conditional message passing neural networks (C-MPNNs). Our key insight is to select multiple query-specific starting entities to expand the scope of progressive propagation. To propagate query-related messages to a farther area within limited steps, we subsequently design a highway layer to propagate information toward these selected starting entities. Moreover, we introduce a training strategy called LinkVerify to mitigate the impact of noisy training samples. Experimental results validate that MStar achieves superior performance compared with state-of-the-art models, especially for distant entities.

Summary

We haven't generated a summary for this paper yet.