Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Facial Landmark Detection for Embedded Systems (2407.10228v1)

Published 14 Jul 2024 in cs.CV

Abstract: This paper introduces the Efficient Facial Landmark Detection (EFLD) model, specifically designed for edge devices confronted with the challenges related to power consumption and time latency. EFLD features a lightweight backbone and a flexible detection head, each significantly enhancing operational efficiency on resource-constrained devices. To improve the model's robustness, we propose a cross-format training strategy. This strategy leverages a wide variety of publicly accessible datasets to enhance the model's generalizability and robustness, without increasing inference costs. Our ablation study highlights the significant impact of each component on reducing computational demands, model size, and improving accuracy. EFLD demonstrates superior performance compared to competitors in the IEEE ICME 2024 Grand Challenges PAIR Competition, a contest focused on low-power, efficient, and accurate facial-landmark detection for embedded systems, showcasing its effectiveness in real-world facial landmark detection tasks.

Summary

We haven't generated a summary for this paper yet.