Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsplittable Flow on a Short Path (2407.10138v1)

Published 14 Jul 2024 in cs.DS

Abstract: In the Unsplittable Flow on a Path problem UFP, we are given a path graph with edge capacities and a collection of tasks. Each task is characterized by a demand, a profit, and a subpath. Our goal is to select a maximum profit subset of tasks such that the total demand of the selected tasks that use each edge $e$ is at most the capacity of $e$. Bag-UFP is the generalization of UFP where tasks are partitioned into bags, and we are allowed to select at most one task per bag. UFP admits a PTAS [Grandoni,M{\"o}mke,Wiese'22] but not an EPTAS [Wiese'17]. Bag-UFP is APX-hard [Spieksma'99] and the current best approximation is $O(\log n/\log\log n)$ [Grandoni,Ingala,Uniyal'15], where $n$ is the number of tasks. In this paper, we study the mentioned two problems when parameterized by the number $m$ of edges in the graph, with the goal of designing faster parameterized approximation algorithms. We present a parameterized EPTAS for Bag-UFP, and a substantially faster parameterized EPTAS for UFP (which is an FPTAS for $m=O(1)$). We also show that a parameterized FPTAS for UFP (hence for BagUFP) does not exist, therefore our results are qualitatively tight.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com