Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Note on the Conditional Optimality of Chiba and Nishizeki's Algorithms (2407.08562v1)

Published 11 Jul 2024 in cs.DS

Abstract: In a seminal work, Chiba and Nishizeki [SIAM J. Comput. 85] developed subgraph listing algorithms for triangles, 4-cycle and $k$-cliques, where $k \geq 3.$ The runtimes of their algorithms are parameterized by the number of edges $m$ and the arboricity $\alpha$ of a graph. The arboricity $\alpha$ of a graph is the minimum number of spanning forests required to cover it. Their work introduces: * A triangle listing algorithm that runs in $O(m\alpha)$ time. * An output-sensitive 4-Cycle-Listing algorithm that lists all 4-cycles in $O(m\alpha + t)$ time, where $t$ is the number of 4-cycles in the graph. * A k-Clique-Listing algorithm that runs in $O(m\alpha^{k-2})$ time, for $k \geq 4.$ Despite the widespread use of these algorithms in practice, no improvements have been made over them in the past few decades. Therefore, recent work has gone into studying lower bounds for subgraph listing problems. The works of Kopelowitz, Pettie and Porat [SODA16] and Vassilevska W. and Xu [FOCS 20] showed that the triangle-listing algorithm of Chiba and Nishizeki is optimal under the $\mathsf{3SUM}$ and $\mathsf{APSP}$ hypotheses respectively. However, it remained open whether the remaining algorithms were optimal. In this note, we show that in fact all the above algorithms are optimal under popular hardness conjectures. First, we show that the $\mathsf{4}\text{-}\mathsf{Cycle}\text{-}\mathsf{Listing}$ algorithm is tight under the $\mathsf{3SUM}$ hypothesis following the techniques of Jin and Xu [STOC23], and Abboud, Bringmann and Fishcher [STOC 23] . Additionally, we show that the $k\text{-}\mathsf{Clique}\text{-}\mathsf{Listing}$ algorithm is essentially tight under the exact $k$-clique hypothesis by following the techniques of Dalirooyfard, Mathialagan, Vassilevska W. and Xu [STOC24]. These hardness results hold even when the number of 4-cycles or $k$-cliques in the graph is small.

Summary

We haven't generated a summary for this paper yet.