Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Optimal Task Planning and Agent-aware Allocation Algorithm in Collaborative Tasks Combining with PDDL and POPF (2407.08534v1)

Published 11 Jul 2024 in eess.SY and cs.SY

Abstract: Industry 4.0 proposes the integration of AI into manufacturing and other industries to create smart collaborative systems which enhance efficiency. The aim of this paper is to develop a flexible and adaptive framework to generate optimal plans for collaborative robots and human workers to replace rigid, hard-coded production line plans in industrial scenarios. This will be achieved by integrating the Planning Domain Definition Language (PDDL), Partial Order Planning Forwards (POPF) task planner, and a task allocation algorithm. The task allocation algorithm proposed in this paper generates a cost function for general actions in the industrial scenario, such as PICK, PLACE, and MOVE, by considering practical factors such as feasibility, reachability, safety, and cooperation level for both robots and human agents. The actions and costs will then be translated into a language understandable by the planning system using PDDL and fed into POPF solver to generate an optimal action plan. In the end, experiments are conducted where assembly tasks are executed by a collaborative system with two manipulators and a human worker to test the feasibility of the theory proposed in this paper.

Summary

We haven't generated a summary for this paper yet.