Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gradual changes in functional time series (2407.07996v2)

Published 10 Jul 2024 in math.ST, stat.ME, and stat.TH

Abstract: We consider the problem of detecting gradual changes in the sequence of mean functions from a not necessarily stationary functional time series. Our approach is based on the maximum deviation (calculated over a given time interval) between a benchmark function and the mean functions at different time points. We speak of a gradual change of size $\Delta $, if this quantity exceeds a given threshold $\Delta>0$. For example, the benchmark function could represent an average of yearly temperature curves from the pre-industrial time, and we are interested in the question if the yearly temperature curves afterwards deviate from the pre-industrial average by more than $\Delta =1.5$ degrees Celsius, where the deviations are measured with respect to the sup-norm. Using Gaussian approximations for high-dimensional data we develop a test for hypotheses of this type and estimators for the time where a deviation of size larger than $\Delta$ appears for the first time. We prove the validity of our approach and illustrate the new methods by a simulation study and a data example, where we analyze yearly temperature curves at different stations in Australia.

Citations (1)

Summary

We haven't generated a summary for this paper yet.