Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Explicit inverse of symmetric, tridiagonal near Toeplitz matrices Part II: with weakly diagonally dominant Toeplitz (2407.07654v1)

Published 10 Jul 2024 in math.NA and cs.NA

Abstract: In this paper, we provide explicit formulas for the exact inverses of the symmetric tridiagonal near-Toeplitz matrices characterized by weak diagonal dominance in the Toeplitz part. Furthermore, these findings extend to scenarios where the corners of the near Toeplitz matrices lack diagonal dominance ($|\widetilde{b}| < 1$). Additionally, we compute the row sums and traces of the inverse matrices, thereby deriving upper bounds for their infinite norms. To demonstrate the practical applicability of our theoretical results, we present numerical examples addressing numerical solution of the Fisher problem using the fixed point method. Our findings reveal that the convergence rates of fixed-point iterations closely align with the expected rates, and there is minimal disparity between the upper bounds and the infinite norm of the inverse matrix. Specifically, this observation holds true for $|b| = 2$ with $|\widetilde{b}| \geq 1$. In other cases, there exists potential to enhance the obtained upper bounds.

Summary

We haven't generated a summary for this paper yet.