Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Segment-Based Interactive Machine Translation for Pre-trained Models (2407.06990v1)

Published 9 Jul 2024 in cs.CL

Abstract: Pre-trained LLMs (LLM) are starting to be widely used in many applications. In this work, we explore the use of these models in interactive machine translation (IMT) environments. In particular, we have chosen mBART (multilingual Bidirectional and Auto-Regressive Transformer) and mT5 (multilingual Text-to-Text Transfer Transformer) as the LLMs to perform our experiments. The system generates perfect translations interactively using the feedback provided by the user at each iteration. The Neural Machine Translation (NMT) model generates a preliminary hypothesis with the feedback, and the user validates new correct segments and performs a word correction--repeating the process until the sentence is correctly translated. We compared the performance of mBART, mT5, and a state-of-the-art (SoTA) machine translation model on a benchmark dataset regarding user effort, Word Stroke Ratio (WSR), Key Stroke Ratio (KSR), and Mouse Action Ratio (MAR). The experimental results indicate that mBART performed comparably with SoTA models, suggesting that it is a viable option for this field of IMT. The implications of this finding extend to the development of new machine translation models for interactive environments, as it indicates that some novel pre-trained models exhibit SoTA performance in this domain, highlighting the potential benefits of adapting these models to specific needs.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Angel Navarro (1 paper)
  2. Francisco Casacuberta (19 papers)