Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Left-continuous random walk on $\mathbb{Z}$ and the parity of its hitting times (2407.06903v1)

Published 9 Jul 2024 in math.PR

Abstract: When it comes to random walk on the integers $\mathbb{Z}$, the arguably first step of generalization beyond simple random walk is the class of one-sidedly continuous random walk, where the stepsize in only one direction is bounded by 1. Moreover, the time until state 0 is hit by left-continuous random walk on $\mathbb{Z}$ has a direct connection to the total progeny in branching processes. In this article, the probability of left-continuous random walk to be negative at an even (resp.\ odd) time is derived and used to determine the probability of nearly left-continuous random walk to eventually become negative.

Summary

We haven't generated a summary for this paper yet.