Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Solving Multi-Model MDPs by Coordinate Ascent and Dynamic Programming (2407.06329v1)

Published 8 Jul 2024 in cs.LG and cs.AI

Abstract: Multi-model Markov decision process (MMDP) is a promising framework for computing policies that are robust to parameter uncertainty in MDPs. MMDPs aim to find a policy that maximizes the expected return over a distribution of MDP models. Because MMDPs are NP-hard to solve, most methods resort to approximations. In this paper, we derive the policy gradient of MMDPs and propose CADP, which combines a coordinate ascent method and a dynamic programming algorithm for solving MMDPs. The main innovation of CADP compared with earlier algorithms is to take the coordinate ascent perspective to adjust model weights iteratively to guarantee monotone policy improvements to a local maximum. A theoretical analysis of CADP proves that it never performs worse than previous dynamic programming algorithms like WSU. Our numerical results indicate that CADP substantially outperforms existing methods on several benchmark problems.

Citations (3)

Summary

We haven't generated a summary for this paper yet.