Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

QTRL: Toward Practical Quantum Reinforcement Learning via Quantum-Train (2407.06103v1)

Published 8 Jul 2024 in quant-ph

Abstract: Quantum reinforcement learning utilizes quantum layers to process information within a machine learning model. However, both pure and hybrid quantum reinforcement learning face challenges such as data encoding and the use of quantum computers during the inference stage. We apply the Quantum-Train method to reinforcement learning tasks, called QTRL, training the classical policy network model using a quantum machine learning model with polylogarithmic parameter reduction. This QTRL approach eliminates the data encoding issues of conventional quantum machine learning and reduces the training parameters of the corresponding classical policy network. Most importantly, the training result of the QTRL is a classical model, meaning the inference stage only requires classical computer. This is extremely practical and cost-efficient for reinforcement learning tasks, where low-latency feedback from the policy model is essential.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com