Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Contraction property of Fock type space of log-subharmonic functions in $\mathbb{R}^m$ (2407.06029v4)

Published 8 Jul 2024 in math.CV

Abstract: We prove a contraction property of Fock type spaces $\mathcal{L}{\alpha}p$ of log-subharmonic functions in $\mathbb{R}n$. To prove the result, we demonstrate a certain monotonic property of measures of the superlevel set of the function $u(x) = |f(x)|p e{-\frac{\alpha}{2} p |x|2}$, provided that $f$ is a certain log-subharmonic function in $\mathbb{R}m$. The result recover a contraction property of holomorphic functions in the Fock space $\mathcal{F}\alphap$ proved by Carlen in \cite{carlen}.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com