Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multimodal Machine Learning for Automated Assessment of Attention-Related Processes during Learning (2407.05803v1)

Published 8 Jul 2024 in cs.HC

Abstract: Attention is a key factor for successful learning, with research indicating strong associations between (in)attention and learning outcomes. This dissertation advanced the field by focusing on the automated detection of attention-related processes using eye tracking, computer vision, and machine learning, offering a more objective, continuous, and scalable assessment than traditional methods such as self-reports or observations. It introduced novel computational approaches for assessing various dimensions of (in)attention in online and classroom learning settings and addressing the challenges of precise fine-granular assessment, generalizability, and in-the-wild data quality. First, this dissertation explored the automated detection of mind-wandering, a shift in attention away from the learning task. Aware and unaware mind wandering were distinguished employing a novel multimodal approach that integrated eye tracking, video, and physiological data. Further, the generalizability of scalable webcam-based detection across diverse tasks, settings, and target groups was examined. Second, this thesis investigated attention indicators during online learning. Eye-tracking analyses revealed significantly greater gaze synchronization among attentive learners. Third, it addressed attention-related processes in classroom learning by detecting hand-raising as an indicator of behavioral engagement using a novel view-invariant and occlusion-robust skeleton-based approach. This thesis advanced the automated assessment of attention-related processes within educational settings by developing and refining methods for detecting mind wandering, on-task behavior, and behavioral engagement. It bridges educational theory with advanced methods from computer science, enhancing our understanding of attention-related processes that significantly impact learning outcomes and educational practices.

Summary

We haven't generated a summary for this paper yet.