Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On T-orthogonality in Banach spaces (2407.05541v1)

Published 8 Jul 2024 in math.FA

Abstract: Let $\mathbb{X}$ be a Banach space and let $\mathbb{X}*$ be the dual space of $\mathbb{X}.$ For $x,y \in \mathbb{X},$ $ x$ is said to be $T$-orthogonal to $y$ if $Tx(y) =0,$ where $T$ is a bounded linear operator from $\mathbb{X}$ to $\mathbb{X}*.$ We study the notion of $T$-orthogonality in a Banach space and investigate its relation with the various geometric properties, like strict convexity, smoothness, reflexivity of the space. We explore the notions of left and right symmetric elements w.r.t. the notion of $T$-orthogonality. We characterize bounded linear operators on $\mathbb{X}$ preserving $T$-orthogonality. Finally we characterize Hilbert spaces among all Banach spaces using $T$-orthogonality. \end{abstract}

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com