Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SPINEX: Similarity-based Predictions with Explainable Neighbors Exploration for Anomaly and Outlier Detection (2407.04760v1)

Published 5 Jul 2024 in cs.LG

Abstract: This paper presents a novel anomaly and outlier detection algorithm from the SPINEX (Similarity-based Predictions with Explainable Neighbors Exploration) family. This algorithm leverages the concept of similarity and higher-order interactions across multiple subspaces to identify outliers. A comprehensive set of experiments was conducted to evaluate the performance of SPINEX. This algorithm was examined against 21 commonly used anomaly detection algorithms, namely, namely, Angle-Based Outlier Detection (ABOD), Connectivity-Based Outlier Factor (COF), Copula-Based Outlier Detection (COPOD), ECOD, Elliptic Envelope (EE), Feature Bagging with KNN, Gaussian Mixture Models (GMM), Histogram-based Outlier Score (HBOS), Isolation Forest (IF), Isolation Neural Network Ensemble (INNE), Kernel Density Estimation (KDE), K-Nearest Neighbors (KNN), Lightweight Online Detector of Anomalies (LODA), Linear Model Deviation-based Detector (LMDD), Local Outlier Factor (LOF), Minimum Covariance Determinant (MCD), One-Class SVM (OCSVM), Quadratic MCD (QMCD), Robust Covariance (RC), Stochastic Outlier Selection (SOS), and Subspace Outlier Detection (SOD), and across 39 synthetic and real datasets from various domains and of a variety of dimensions and complexities. Furthermore, a complexity analysis was carried out to examine the complexity of the proposed algorithm. Our results demonstrate that SPINEX achieves superior performance, outperforms commonly used anomaly detection algorithms, and has moderate complexity (e.g., O(n log n d)). More specifically, SPINEX was found to rank at the top of algorithms on the synthetic datasets and the 7th on the real datasets. Finally, a demonstration of the explainability capabilities of SPINEX, along with future research needs, is presented.

Summary

We haven't generated a summary for this paper yet.