Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Strongly consistent low-dissipation WENO schemes for finite elements (2407.04646v1)

Published 5 Jul 2024 in math.NA, cs.NA, and math.AP

Abstract: We propose a way to maintain strong consistency and facilitate error analysis in the context of dissipation-based WENO stabilization for continuous and discontinuous Galerkin discretizations of conservation laws. Following Kuzmin and Vedral (J. Comput. Phys. 487:112153, 2023) and Vedral (arXiv preprint arXiv:2309.12019), we use WENO shock detectors to determine appropriate amounts of low-order artificial viscosity. In contrast to existing WENO methods, our approach blends candidate polynomials using residual-based nonlinear weights. The shock-capturing terms of our stabilized Galerkin methods vanish if residuals do. This enables us to achieve improved accuracy compared to weakly consistent alternatives. As we show in the context of steady convection-diffusion-reaction (CDR) equations, nonlinear local projection stabilization terms can be included in a way that preserves the coercivity of local bilinear forms. For the corresponding Galerkin-WENO discretization of a CDR problem, we rigorously derive a priori error estimates. Additionally, we demonstrate the stability and accuracy of the proposed method through one- and two-dimensional numerical experiments for hyperbolic conservation laws and systems thereof. The numerical results for representative test problems are superior to those obtained with traditional WENO schemes, particularly in scenarios involving shocks and steep gradients.

Summary

We haven't generated a summary for this paper yet.