Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Workflows and Smells of Leaderboard Operations (LBOps): An Exploratory Study of Foundation Model Leaderboards (2407.04065v3)

Published 4 Jul 2024 in cs.SE and cs.LG

Abstract: Foundation models (FM), such as LLMs, which are large-scale ML models, have demonstrated remarkable adaptability in various downstream software engineering (SE) tasks, such as code completion, code understanding, and software development. As a result, FM leaderboards have become essential tools for SE teams to compare and select the best third-party FMs for their specific products and purposes. However, the lack of standardized guidelines for FM evaluation and comparison threatens the transparency of FM leaderboards and limits stakeholders' ability to perform effective FM selection. As a first step towards addressing this challenge, our research focuses on understanding how these FM leaderboards operate in real-world scenarios ("leaderboard operations") and identifying potential pitfalls and areas for improvement ("leaderboard smells"). In this regard, we collect up to 1,045 FM leaderboards from five different sources: GitHub, Hugging Face Spaces, Papers With Code, spreadsheet and independent platform, to examine their documentation and engage in direct communication with leaderboard operators to understand their workflows. Through card sorting and negotiated agreement, we identify five distinct workflow patterns and develop a domain model that captures the key components and their interactions within these workflows. We then identify eight unique types of leaderboard smells in LBOps. By mitigating these smells, SE teams can improve transparency, accountability, and collaboration in current LBOps practices, fostering a more robust and responsible ecosystem for FM comparison and selection.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com