Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Where's That Voice Coming? Continual Learning for Sound Source Localization (2407.03661v3)

Published 4 Jul 2024 in eess.AS and cs.SD

Abstract: Sound source localization (SSL) is essential for many speech-processing applications. Deep learning models have achieved high performance, but often fail when the training and inference environments differ. Adapting SSL models to dynamic acoustic conditions faces a major challenge: catastrophic forgetting. In this work, we propose an exemplar-free continual learning strategy for SSL (CL-SSL) to address such a forgetting phenomenon. CL-SSL applies task-specific sub-networks to adapt across diverse acoustic environments while retaining previously learned knowledge. It also uses a scaling mechanism to limit parameter growth, ensuring consistent performance across incremental tasks. We evaluated CL-SSL on simulated data with varying microphone distances and real-world data with different noise levels. The results demonstrate CL-SSL's ability to maintain high accuracy with minimal parameter increase, offering an efficient solution for SSL applications.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com