Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

HiDiff: Hybrid Diffusion Framework for Medical Image Segmentation (2407.03548v1)

Published 3 Jul 2024 in cs.CV

Abstract: Medical image segmentation has been significantly advanced with the rapid development of deep learning (DL) techniques. Existing DL-based segmentation models are typically discriminative; i.e., they aim to learn a mapping from the input image to segmentation masks. However, these discriminative methods neglect the underlying data distribution and intrinsic class characteristics, suffering from unstable feature space. In this work, we propose to complement discriminative segmentation methods with the knowledge of underlying data distribution from generative models. To that end, we propose a novel hybrid diffusion framework for medical image segmentation, termed HiDiff, which can synergize the strengths of existing discriminative segmentation models and new generative diffusion models. HiDiff comprises two key components: discriminative segmentor and diffusion refiner. First, we utilize any conventional trained segmentation models as discriminative segmentor, which can provide a segmentation mask prior for diffusion refiner. Second, we propose a novel binary Bernoulli diffusion model (BBDM) as the diffusion refiner, which can effectively, efficiently, and interactively refine the segmentation mask by modeling the underlying data distribution. Third, we train the segmentor and BBDM in an alternate-collaborative manner to mutually boost each other. Extensive experimental results on abdomen organ, brain tumor, polyps, and retinal vessels segmentation datasets, covering four widely-used modalities, demonstrate the superior performance of HiDiff over existing medical segmentation algorithms, including the state-of-the-art transformer- and diffusion-based ones. In addition, HiDiff excels at segmenting small objects and generalizing to new datasets. Source codes are made available at https://github.com/takimailto/HiDiff.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (53)
  1. F. Isensee, P. F. Jaeger, S. A. Kohl, J. Petersen, and K. H. Maier-Hein, “nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation,” Nat. Methods, vol. 18, no. 2, pp. 203–211, 2021.
  2. Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, “UNet++: Redesigning skip connections to exploit multiscale features in image segmentation,” IEEE Trans. Med. Imaging, vol. 39, no. 6, pp. 1856–1867, 2019.
  3. H. Huang et al., “UNet 3+: A full-scale connected UNet for medical image segmentation,” in ICASSP, 2020, pp. 1055–1059.
  4. R. Gu et al., “CA-Net: Comprehensive attention convolutional neural networks for explainable medical image segmentation,” IEEE Trans. Med. Imaging, vol. 40, no. 2, pp. 699–711, 2020.
  5. H. Cao et al., “Swin-Unet: Unet-like pure transformer for medical image segmentation,” in ECCV, 2022, pp. 205–218.
  6. J. Chen et al., “TransUNet: Transformers make strong encoders for medical image segmentation,” arXiv:2102.04306, 2021.
  7. D. Bo et al., “Polyp-PVT: Polyp segmentation with pyramidvision transformers,” CAAI AIR, 2023.
  8. X. Huang, Z. Deng, D. Li, X. Yuan, and Y. Fu, “MISSFormer: An effective transformer for 2D medical image segmentation,” IEEE Trans. Med. Imaging, 2023.
  9. W. Liu, Y. Wen, Z. Yu, and M. Yang, “Large-margin softmax loss for convolutional neural networks,” arXiv:1612.02295, 2016.
  10. J. Bernardo et al., “Generative or discriminative? getting the best of both worlds,” Bayesian Statist., vol. 8, no. 3, pp. 3–24, 2007.
  11. L. Ardizzone, R. Mackowiak, C. Rother, and U. Köthe, “Training normalizing flows with the information bottleneck for competitive generative classification,” in NeurIPS, 2020, pp. 7828–7840.
  12. C. Liang, W. Wang, J. Miao, and Y. Yang, “GMMSeg: Gaussian mixture based generative semantic segmentation models,” in NeurIPS, 2022, pp. 31 360–31 375.
  13. J. Wolleb, R. Sandkühler, F. Bieder, P. Valmaggia, and P. C. Cattin, “Diffusion models for implicit image segmentation ensembles,” in MIDL, 2022, pp. 1336–1348.
  14. J. Austin, D. D. Johnson, J. Ho, D. Tarlow, and R. van den Berg, “Structured denoising diffusion models in discrete state-spaces,” in NeurIPS, 2021, pp. 17 981–17 993.
  15. B. Efron, “The efficiency of logistic regression compared to normal discriminant analysis,” J. Am. Stat. Assoc., vol. 70, no. 352, pp. 892–898, 1975.
  16. A. Ng and M. Jordan, “On discriminative vs. generative classifiers: A comparison of logistic regression and naive Bayes,” in NeurIPS, vol. 14, 2001.
  17. I. Goodfellow et al., “Generative adversarial nets,” in NeurIPS, 2014.
  18. J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” in NeurIPS, 2020, pp. 6840–6851.
  19. X. Guo, Y. Yang, C. Ye, S. Lu, Y. Xiang, and T. Ma, “Accelerating diffusion models via pre-segmentation diffusion sampling for medical image segmentation,” arXiv:2210.17408, 2022.
  20. J. Wu, R. Fu, H. Fang, Y. Zhang, and Y. Xu, “MedSegDiff-V2: Diffusion based medical image segmentation with transformer,” arXiv:2301.11798, 2023.
  21. Z. Chen, Q. Gao, Y. Zhang, and H. Shan, “ASCON: Anatomy-aware supervised contrastive learning framework for low-dose CT denoising,” in MICCAI, 2023.
  22. J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep unsupervised learning using nonequilibrium thermodynamics,” in ICML, 2015, pp. 2256–2265.
  23. J. Song, C. Meng, and S. Ermon, “Denoising diffusion implicit models,” in ICLR, 2021.
  24. Z. Dorjsembe, S. Odonchimed, and F. Xiao, “Three-dimensional medical image synthesis with denoising diffusion probabilistic models,” in MIDL, 2022.
  25. F. Khader et al., “Medical diffusion–denoising diffusion probabilistic models for 3D medical image generation,” arXiv:2211.03364, 2022.
  26. Q. Gao, Z. Li, J. Zhang, Y. Zhang, and H. Shan, “CoreDiff: Contextual error-modulated generalized diffusion model for low-dose CT denoising and generalization,” IEEE Trans. Med. Imaging, vol. 43, no. 2, pp. 745-759, 2024.
  27. T. Amit, T. Shaharbany, E. Nachmani, and L. Wolf, “SegDiff: Image segmentation with diffusion probabilistic models,” arXiv:2112.00390, 2021.
  28. J. Wu, H. Fang, Y. Zhang, Y. Yang, and Y. Xu, “MedSegDiff: Medical image segmentation with diffusion probabilistic model,” in MIDL, 2023.
  29. T. Chen, C. Wang, and H. Shan, “BerDiff: Conditional bernoulli diffusion model for medical image segmentation,” in MICCAI, 2023.
  30. O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks for biomedical image segmentation,” in MICCAI, 2015, pp. 234–241.
  31. A. Q. Nichol and P. Dhariwal, “Improved denoising diffusion probabilistic models,” in ICML, 2021, pp. 8162–8171.
  32. E. Hoogeboom, D. Nielsen, P. Jaini, P. Forré, and M. Welling, “Argmax flows and multinomial diffusion: Learning categorical distributions,” in NeurIPS, 2021, pp. 12 454–12 465.
  33. T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense object detection,” in ICCV, 2017, pp. 2980–2988.
  34. P.-H. C. Le and X. Li, “BinaryViT: Pushing binary vision transformers towards convolutional models,” in CVPR, 2023, pp. 4664–4673.
  35. M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net: ImageNet classification using binary convolutional neural networks,” in ECCV, 2016, pp. 525–542.
  36. A. Bulat and G. Tzimiropoulos, “XNOR-Net++: Improved binary neural networks,” arXiv:1909.13863, 2019.
  37. X. Huang and S. Belongie, “Arbitrary style transfer in real-time with adaptive instance normalization,” in ICCV, 2017, pp. 1501–1510.
  38. B. Cheng, A. Schwing, and A. Kirillov, “Per-pixel classification is not all you need for semantic segmentation,” in NeurIPS, 2021, pp. 17 864–17 875.
  39. M. M. Rahman and R. Marculescu, “Medical image segmentation via cascaded attention decoding,” in NeurIPS, 2023, pp. 6222–6231.
  40. M. Mostafijur Rahman and R. Marculescu, “Multi-scale hierarchical vision transformer with cascaded attention decoding for medical image segmentation,” in MIDL, 2023.
  41. U. Baid et al., “The RSNA-ASNR-MICCAI BraTS 2021 benchmark on brain tumor segmentation and radiogenomic classification,” arXiv:2107.02314, 2021.
  42. D. Jha et al., “Kvasir-SEG: A segmented polyp dataset,” in MMM 2020.   Springer, 2020, pp. 451–462.
  43. J. Bernal et al., “WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians,” Comput. Med. Imaging Graph, vol. 43, pp. 99–111, 2015.
  44. R.-G. Dumitru, D. Peteleaza, and C. Craciun, “Using DUCK-Net for polyp image segmentation,” Sci. Rep., vol. 13, no. 1, p. 9803, 2023.
  45. J. Staal, M. D. Abràmoff, M. Niemeijer, M. A. Viergever, and B. Van Ginneken, “Ridge-based vessel segmentation in color images of the retina,” IEEE Trans. Med. Imaging, vol. 23, no. 4, pp. 501–509, 2004.
  46. A. Carballal et al., “Automatic multiscale vascular image segmentation algorithm for coronary angiography,” Biomed. Signal Process. Control., vol. 46, pp. 1–9, 2018.
  47. W. Liu et al., “Full-resolution network and dual-threshold iteration for retinal vessel and coronary angiograph segmentation,” IEEE J. Biomed. Health Inform., vol. 26, no. 9, pp. 4623–4634, 2022.
  48. M. M. Rahman and R. Marculescu, “G-CASCADE: Efficient cascaded graph convolutional decoding for 2D medical image segmentation,” in WACV, 2024, pp. 7728–7737.
  49. A. Paszke et al., “Pytorch: An imperative style, high-performance deep learning library,” in NeurIPS, 2019.
  50. I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” in ICLR, 2019.
  51. A. A. Taha and A. Hanbury, “Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool,” BMC Med. Imag., vol. 15, no. 1, pp. 1–28, 2015.
  52. D. P. Huttenlocher, G. A. Klanderman, and W. J. Rucklidge, “Comparing images using the Hausdorff distance,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 15, no. 9, pp. 850–863, 1993.
  53. A. L. Simpson et al., “A large annotated medical image dataset for the development and evaluation of segmentation algorithms,” arXiv:1902.09063, 2019.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Tao Chen (397 papers)
  2. Chenhui Wang (24 papers)
  3. Zhihao Chen (66 papers)
  4. Yiming Lei (25 papers)
  5. Hongming Shan (91 papers)
Citations (2)
Github Logo Streamline Icon: https://streamlinehq.com

GitHub