Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Chebyshev Spectral Neural Networks for Solving Partial Differential Equations (2407.03347v1)

Published 6 Jun 2024 in math.NA, cs.LG, cs.NA, math-ph, and math.MP

Abstract: The purpose of this study is to utilize the Chebyshev spectral method neural network(CSNN) model to solve differential equations. This approach employs a single-layer neural network wherein Chebyshev spectral methods are used to construct neurons satisfying boundary conditions. The study uses a feedforward neural network model and error backpropagation principles, utilizing automatic differentiation (AD) to compute the loss function. This method avoids the need to solve non-sparse linear systems, making it convenient for algorithm implementation and solving high-dimensional problems. The unique sampling method and neuron architecture significantly enhance the training efficiency and accuracy of the neural network. Furthermore, multiple networks enables the Chebyshev spectral method to handle equations on more complex domains. The numerical efficiency and accuracy of the CSNN model are investigated through testing on elliptic partial differential equations, and it is compared with the well-known Physics-Informed Neural Network(PINN) method.

Summary

We haven't generated a summary for this paper yet.