Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Motion meets Attention: Video Motion Prompts (2407.03179v2)

Published 3 Jul 2024 in cs.CV, cs.AI, and cs.LG

Abstract: Videos contain rich spatio-temporal information. Traditional methods for extracting motion, used in tasks such as action recognition, often rely on visual contents rather than precise motion features. This phenomenon is referred to as 'blind motion extraction' behavior, which proves inefficient in capturing motions of interest due to a lack of motion-guided cues. Recently, attention mechanisms have enhanced many computer vision tasks by effectively highlighting salient visual areas. Inspired by this, we propose a modified Sigmoid function with learnable slope and shift parameters as an attention mechanism to modulate motion signals from frame differencing maps. This approach generates a sequence of attention maps that enhance the processing of motion-related video content. To ensure temporal continuity and smoothness of the attention maps, we apply pair-wise temporal attention variation regularization to remove unwanted motions (e.g., noise) while preserving important ones. We then perform Hadamard product between each pair of attention maps and the original video frames to highlight the evolving motions of interest over time. These highlighted motions, termed video motion prompts, are subsequently used as inputs to the model instead of the original video frames. We formalize this process as a motion prompt layer and incorporate the regularization term into the loss function to learn better motion prompts. This layer serves as an adapter between the model and the video data, bridging the gap between traditional 'blind motion extraction' and the extraction of relevant motions of interest. We show that our lightweight, plug-and-play motion prompt layer seamlessly integrates into models like SlowFast, X3D, and TimeSformer, enhancing performance on benchmarks such as FineGym and MPII Cooking 2.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Qixiang Chen (3 papers)
  2. Lei Wang (975 papers)
  3. Piotr Koniusz (84 papers)
  4. Tom Gedeon (72 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.