Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Zero-X: A Blockchain-Enabled Open-Set Federated Learning Framework for Zero-Day Attack Detection in IoV (2407.02969v1)

Published 3 Jul 2024 in cs.CR and cs.AI

Abstract: The Internet of Vehicles (IoV) is a crucial technology for Intelligent Transportation Systems (ITS) that integrates vehicles with the Internet and other entities. The emergence of 5G and the forthcoming 6G networks presents an enormous potential to transform the IoV by enabling ultra-reliable, low-latency, and high-bandwidth communications. Nevertheless, as connectivity expands, cybersecurity threats have become a significant concern. The issue has been further exacerbated by the rising number of zero-day (0-day) attacks, which can exploit unknown vulnerabilities and bypass existing Intrusion Detection Systems (IDSs). In this paper, we propose Zero-X, an innovative security framework that effectively detects both 0-day and N-day attacks. The framework achieves this by combining deep neural networks with Open-Set Recognition (OSR). Our approach introduces a novel scheme that uses blockchain technology to facilitate trusted and decentralized federated learning (FL) of the ZeroX framework. This scheme also prioritizes privacy preservation, enabling both CAVs and Security Operation Centers (SOCs) to contribute their unique knowledge while protecting the privacy of their sensitive data. To the best of our knowledge, this is the first work to leverage OSR in combination with privacy-preserving FL to identify both 0-day and N-day attacks in the realm of IoV. The in-depth experiments on two recent network traffic datasets show that the proposed framework achieved a high detection rate while minimizing the false positive rate. Comparison with related work showed that the Zero-X framework outperforms existing solutions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. Y. Guo, “A review of machine learning-based zero-day attack detection: Challenges and future directions,” Computer Communications, 2022.
  2. N. Turgeman, “Infographic: Top real-world threats facing connected cars and fleets,” Sep 2022. [Online]. Available: https://upstream.auto/blog/infographic-top-real-world-threats-facing-connected-cars-fleets/
  3. A. Boualouache and T. Engel, “A Survey on Machine Learning-based Misbehavior Detection Systems for 5G and Beyond Vehicular Networks,” arXiv preprint arXiv:2201.10500, 2022.
  4. M. Abdel-Basset, N. Moustafa, H. Hawash, I. Razzak, K. M. Sallam, and O. M. Elkomy, “Federated intrusion detection in blockchain-based smart transportation systems,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 3, pp. 2523–2537, 2021.
  5. R. Rahal, A. Amara Korba, N. Ghoualmi-Zine, Y. Challal, and M. Y. Ghamri-Doudane, “Antibotv: A multilevel behaviour-based framework for botnets detection in vehicular networks,” Journal of Network and Systems Management, vol. 30, pp. 1–40, 2022.
  6. A. Boualouache and T. Engel, “Federated learning-based inter-slice attack detection for 5g-v2x sliced networks,” in 2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall).   IEEE, 2022, pp. 1–6.
  7. A. A. Korba, A. Boualouache, B. Brik, R. Rahal, Y. Ghamri-Doudane, and S. M. Senouci, “Federated learning for zero-day attack detection in 5g and beyond v2x networks,” in AlgoTel 2023-25èmes Rencontres Francophones sur les Aspects Algorithmiques des Télécommunications, 2023.
  8. S. Jeong, S. Lee, H. Lee, and H. K. Kim, “X-canids: Signal-aware explainable intrusion detection system for controller area network-based in-vehicle network,” arXiv preprint arXiv:2303.12278, 2023.
  9. J. Ashraf, A. D. Bakhshi, N. Moustafa, H. Khurshid, A. Javed, and A. Beheshti, “Novel deep learning-enabled lstm autoencoder architecture for discovering anomalous events from intelligent transportation systems,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 7, pp. 4507–4518, 2020.
  10. C. Geng, S.-j. Huang, and S. Chen, “Recent advances in open set recognition: A survey,” IEEE transactions on pattern analysis and machine intelligence, vol. 43, no. 10, pp. 3614–3631, 2020.
  11. S. Kong and D. Ramanan, “Opengan: Open-set recognition via open data generation,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 813–822.
  12. L. Neal, M. Olson, X. Fern, W.-K. Wong, and F. Li, “Open set learning with counterfactual images,” in Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 613–628.
  13. P. Oza and V. M. Patel, “C2ae: Class conditioned auto-encoder for open-set recognition,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 2307–2316.
  14. Z. Zhang, Y. Zhang, J. Niu, and D. Guo, “Unknown network attack detection based on open-set recognition and active learning in drone network,” Transactions on Emerging Telecommunications Technologies, vol. 33, no. 10, p. e4212, 2022.
  15. S. Xu, L. Li, H. Yang, and J. Tang, “Kcc method: Unknown intrusion detection based on open set recognition,” in 2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI), 2021, pp. 1343–1347.
  16. A. Uprety, D. B. Rawat, and J. Li, “Privacy Preserving Misbehavior Detection in IoV using Federated Machine Learning,” in 2021 IEEE 18th Annual Consumer Communications & Networking Conference (CCNC).   IEEE, 2021, pp. 1–6.
  17. H. Liu, S. Zhang, P. Zhang, X. Zhou, X. Shao, G. Pu, and Y. Zhang, “Blockchain and federated learning for collaborative intrusion detection in vehicular edge computing,” IEEE Transactions on Vehicular Technology, vol. 70, no. 6, pp. 6073–6084, 2021.
  18. A. Hbaieb, S. Ayed, and L. Chaari, “Federated learning based IDS approach for the IoV,” in Proceedings of the 17th International Conference on Availability, Reliability and Security, 2022, pp. 1–6.
  19. S. Samarakoon, Y. Siriwardhana, P. Porambage, M. Liyanage, S.-Y. Chang, J. Kim, J. Kim, and M. Ylianttila, “5g-nidd: A comprehensive network intrusion detection dataset generated over 5g wireless network,” arXiv preprint arXiv:2212.01298, 2022.
  20. R. Rahal, A. Amara Korba, and N. Ghoualmi-Zine, “Towards the development of realistic dos dataset for intelligent transportation systems,” Wireless Personal Communications, vol. 115, no. 2, pp. 1415–1444, 2020.
  21. S. Anbalagan, G. Raja, S. Gurumoorthy, R. D. Suresh, and K. Dev, “Iids: Intelligent intrusion detection system for sustainable development in autonomous vehicles,” IEEE Transactions on Intelligent Transportation Systems, 2023.
  22. Q. Lai, C. Xiong, J. Chen, W. Wang, J. Chen, T. R. Gadekallu, M. Cai, and X. Hu, “Improved transformer-based privacy-preserving architecture for intrusion detection in secure v2x communications,” IEEE Transactions on Consumer Electronics, 2023.
  23. I. A. Khan, N. Moustafa, D. Pi, W. Haider, B. Li, and A. Jolfaei, “An enhanced multi-stage deep learning framework for detecting malicious activities from autonomous vehicles,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 12, pp. 25 469–25 478, 2022.
  24. K. Agrawal, T. Alladi, A. Agrawal, V. Chamola, and A. Benslimane, “Novelads: A novel anomaly detection system for intra-vehicular networks,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 11, pp. 22 596–22 606, 2022.
  25. L. Yang, A. Moubayed, and A. Shami, “Mth-ids: A multitiered hybrid intrusion detection system for internet of vehicles,” IEEE Internet of Things Journal, vol. 9, no. 1, pp. 616–632, 2022.
  26. H. Sedjelmaci and N. Ansari, “On cooperative federated defense to secure multi-access edge computing,” IEEE Consumer Electronics Magazine, pp. 1–1, 2022.
  27. R. Rahal, A. Amara Korba, N. Ghoualmi-Zine, Y. Challal, and M. Y. Ghamri-Doudane, “Antibotv: A multilevel behaviour-based framework for botnets detection in vehicular networks,” Journal of Network and Systems Management, vol. 30, no. 1, pp. 1–40, 2022.
  28. H. Chen, S. A. Asif, J. Park, C.-C. Shen, and M. Bennis, “Robust blockchained federated learning with model validation and proof-of-stake inspired consensus,” arXiv preprint arXiv:2101.03300, 2021.
  29. P. Zhao, Z. Cao, J. Jiang, and F. Gao, “Practical private aggregation in federated learning against inference attack,” IEEE Internet of Things Journal, vol. 10, no. 1, pp. 318–329, 2022.
  30. D. Lee, S. Yu, and H. Yu, “Multi-class data description for out-of-distribution detection,” in Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020, pp. 1362–1370.
  31. G. E. Hinton and R. Zemel, “Autoencoders, minimum description length and helmholtz free energy,” Advances in neural information processing systems, vol. 6, 1993.
  32. Q. Wang, J. Yu, Z. Peng, V. C. Bui, S. Chen, Y. Ding, and Y. Xiang, “Security analysis on dbft protocol of neo,” in Financial Cryptography and Data Security: 24th International Conference, FC 2020, Kota Kinabalu, Malaysia, February 10–14, 2020 Revised Selected Papers 24.   Springer, 2020, pp. 20–31.
  33. “Cicflowmeter,” https://github.com/CanadianInstituteForCybersecurity/CI, accessed: 2023-04-26.
  34. H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-efficient learning of deep networks from decentralized data,” in AISTATS, 2017.
  35. A. Boualouache, B. Brik, S.-M. Senouci, and T. Engel, “On-demand security framework for 5gb vehicular networks,” IEEE Internet of Things Magazine, 2023.
  36. A. Selamnia, B. Brik, S. M. Senouci, A. Boualouache, and S. Hossain, “Edge computing-enabled intrusion detection for c-v2x networks using federated learning,” in GLOBECOM 2022-2022 IEEE Global Communications Conference.   IEEE, 2022, pp. 2080–2085.
  37. I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating a new intrusion detection dataset and intrusion traffic characterization.” ICISSp, vol. 1, pp. 108–116, 2018.
Citations (5)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com