Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Hybrid Reactive Routing Protocol for Decentralized UAV Networks (2407.02929v1)

Published 3 Jul 2024 in cs.NI

Abstract: Wireless networks consisting of low SWaP, FW-UAVs are used in many applications, such as monitoring, search and surveillance of inaccessible areas. A decentralized and autonomous approach ensures robustness to failures; the UAVs explore and sense within the area and forward their information, in a multihop manner, to nearby aerial gateway nodes. However, the unpredictable nature of the events, relatively high speed of UAVs, and dynamic UAV trajectories cause the network topology to change significantly over time, resulting in frequent route breaks. A holistic routing approach is needed to support multiple traffic flows in these networks to provide mobility- and congestion-aware, high-quality routes when needed, with low control and computational overheads, using the information collected in a distributed manner. Existing routing schemes do not address all the mentioned issues. We present a hybrid reactive routing protocol for decentralized UAV networks. Our scheme searches routes on-demand, monitors a region around the selected route (the pipe), and proactively switches to an alternative route before the current route's quality degrades below a threshold. We empirically evaluate the impact of pipe width and node density on our ability to find alternate high-quality routes within the pipe and the overhead required to maintain the pipe. Compared to existing reactive routing schemes, our approach achieves higher throughput and reduces the number of route discoveries, overhead, and resulting flow interruptions at different traffic loads, node densities and speeds. Despite having limited network topology information, and low overhead and route computation complexity, our proposed scheme achieves superior throughput to proactive optimized link state routing scheme at different network and traffic settings. We also evaluate the relative performance of reactive and proactive routing schemes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (44)
  1. N. Mansoor, M. I. Hossain, A. Rozario, M. Zareei, and A. R. Arreola, “A fresh look at routing protocols in unmanned aerial vehicular networks: A survey,” IEEE Access, vol. 11, pp. 66 289–66 308, 2023.
  2. M. M. Alam and S. Moh, “Survey on Q-learning-based position-aware routing protocols in flying ad hoc networks,” Electron., vol. 11, no. 7, Art. no. 1099, 2022.
  3. A. Rovira-Sugranes, A. Razi, F. Afghah, and J. Chakareski, “A review of AI-enabled routing protocols for UAV networks: Trends, challenges, and future outlook,” Ad Hoc Netw., vol. 130, Art. no. 102790, 2022.
  4. B. Alzahrani, O. S. Oubbati, A. Barnawi, M. Atiquzzaman, and D. Alghazzawi, “UAV assistance paradigm: State-of-the-art in applications and challenges,” J. Netw. Comput. Applications, vol. 166, p. 102706, 2020.
  5. S. Devaraju, M. Parsinia, E. S. Bentley, and S. Kumar, “A multipath local route repair scheme for bidirectional traffic in an airborne network of multibeam FDD nodes,” IEEE Trans. Aerosp. Electron. Syst., vol. 58, no. 4, pp. 2983–2995, 2022.
  6. M. Gharib, F. Afghah, and E. S. Bentley, “LB-OPAR: Load balanced optimized predictive and adaptive routing for cooperative UAV networks,” Ad Hoc Networks, vol. 132, Art. no. 102878, 2022.
  7. A. A. Ateya, A. Muthanna, I. Gudkova, Y. Gaidamaka, and A. D. Algarni, “Latency and energy-efficient multi-hop routing protocol for unmanned aerial vehicle networks,” Int. J. Distr. Sensor Netw., vol. 15, no. 8, 2019. doi/10.1177/1550147719866392.
  8. S.-W. Lee et al., “An energy-aware and predictive fuzzy logic-based routing scheme in flying ad hoc networks (FANETs),” IEEE Access, vol. 9, pp. 129 977–130 005, 2021.
  9. S. Garg, A. Ihler, and S. Kumar, “Accurate link lifetime computation in autonomous airborne UAV networks,” arXiv:2202.00056 [cs.NI], 2022.
  10. A. M. Rahmani et al., “OLSR+: A new routing method based on fuzzy logic in flying ad-hoc networks (FANETs),” Veh. Commun., p. 100489, 2022.
  11. S. Garg, A. Ihler, E. S. Bentley, and S. Kumar, “A cross-layer, mobility and congestion-aware routing protocol for UAV networks,” IEEE Trans. Aerosp. Electron. Syst., 2022. doi: 10.1109/TAES.2022.3232322.
  12. T. Clausen and P. Jacquet, “Optimized link state routing protocol (OLSR),” RFC 3626, 2003.
  13. T. K. Saini and S. C. Sharma, “Recent advancements, review analysis, and extensions of the AODV with the illustration of the applied concept,” Ad Hoc Netw., vol. 103, Article No. 102148, 2020.
  14. X. Li and J. Yan, “LEPR: Link stability estimation-based preemptive routing protocol for flying ad hoc networks,” in IEEE Symp.Comput. Commun.   IEEE, 2017, pp. 1079–1084.
  15. M. K. Marina and S. R. Das, “Ad hoc on-demand multipath distance vector routing,” Wireless Commun. Mobile Comput., vol. 6, no. 7, pp. 969–988, 2006.
  16. C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc on-demand distance vector (AODV) routing,” RFC 3561, 2003.
  17. A. K. Dogra et al., “Q-AODV: A flood control ad-hoc on demand distance vector routing protocol,” in Int. Conf. Secure Cyber Comput. Commun.   IEEE, 2018, pp. 294–299.
  18. N. Ahmad, S. Sethi, and M. Ahmed, “Cache-aware query-broadcast to improve QoS of routing protocols in MANETs,” Wireless Pers. Commun., vol. 113, no. 1, pp. 481–498, 2020.
  19. B. H. Khudayer, M. Anbar, S. M. Hanshi, and T.-C. Wan, “Efficient route discovery and link failure detection mechanisms for source routing protocol in mobile ad-hoc networks,” IEEE Access, vol. 8, pp. 24 019–24 032, 2020.
  20. C. E. Perkins and E. M. Belding-Royer, “Quality of service for ad hoc on-demand distance vector routing,” 2003.
  21. D. Jinil Persis and T. Paul Robert, “Review of ad-hoc on-demand distance vector protocol and its swarm intelligent variants for mobile ad-hoc network,” IET Netw., vol. 6, no. 5, pp. 87–93, 2017.
  22. A. O. Fapojuwo, O. Salazar, and A. B. Sesay, “Performance of a QoS-based multiple-route ad hoc on-demand distance vector protocol for mobile ad hoc networks,” Canadian J. Elect. Comput. Eng., vol. 29, no. 1/2, pp. 149–155, 2004.
  23. S. Kumar, S. Khimsara, K. Kambhatla, K. Girivanesh, J. D. Matyjas, and M. Medley, “Robust on-demand multipath routing with dynamic path upgrade for delay-sensitive data over ad hoc networks,” J. Comput. Netw. Commun., vol. 2013, Art. no. 791097, 2013.
  24. P. Li, L. Guo, and F. Wang, “A multipath routing protocol with load balancing and energy constraining based on AOMDV in ad hoc network,” Mobile Netw. Appl., pp. 1–10, 2019.
  25. H.-H. Choi and J.-R. Lee, “Local flooding-based on-demand routing protocol for mobile ad hoc networks,” IEEE Access, vol. 7, pp. 85 937–85 948, 2019.
  26. M. Hosseinzadeh et al., “An energy-aware routing scheme based on a virtual relay tunnel in flying ad hoc networks,” Alexandria Eng. J., vol. 91, pp. 249–260, 2024.
  27. J. Guo et al., “ICRA: An intelligent clustering routing approach for UAV ad hoc networks,” IEEE Trans. Intell. Transp. Syst., vol. 24, no. 2, pp. 2447–2460, 2022.
  28. C. Singhal and S. Barick, “ECMS: Energy-efficient collaborative multi-UAV surveillance system for inaccessible regions,” IEEE Access, vol. 10, pp. 95 876–95 891, 2022.
  29. W. J. Lau et al., “AQR-FANET: An anticipatory Q-learning-based routing protocol for FANETs,” in IEEE Malaysia Int. Conf. Commun.   IEEE, 2023, pp. 6–11.
  30. J. Lou, X. Yuan, S. Kompella, and N.-F. Tzeng, “Boosting or hindering: AoI and throughput interrelation in routing-aware multi-hop wireless networks,” IEEE/ACM Trans. Netw., vol. 29, no. 3, pp. 1008–1021, 2021.
  31. A. V. Leonov and G. A. Litvinov, “Considering AODV and OLSR routing protocols to traffic monitoring scenario in FANET formed by mini-UAVs,” in Int. Sci.-Tech. Conf. Actual Problems Electron. Instrum. Eng.   IEEE, 2018, pp. 229–237.
  32. A. AlKhatieb, E. Felemban, and A. Naseer, “Performance evaluation of ad-hoc routing protocols in FANETs,” in IEEE Wireless Commun. Netw. Conf. Workshops.   IEEE, 2020, pp. 1–6.
  33. T. Kim, S. Lee, K. H. Kim, and Y.-I. Jo, “FANET routing protocol analysis for multi-UAV-based reconnaissance mobility models,” Drones, vol. 7, no. 3, p. 161, 2023.
  34. T. Clausen, P. Jacquet, and L. Viennot, “Comparative study of routing protocols for mobile ad hoc networks,” in Med-hoc-Net, 2002.
  35. Y. Wan, K. Namuduri, Y. Zhou, and S. Fu, “A smooth-turn mobility model for airborne networks,” IEEE Trans. Veh. Tech., vol. 62, no. 7, pp. 3359–3370, 2013.
  36. S. Garg, “An adaptive and low-complexity routing protocol for distributed airborne networks,” in EWSN, 2021, pp. 187–191.
  37. H. Johnston, “Cliques of a graph-variations on the Bron-Kerbosch algorithm,” Int. J. Comput. Inf. Sciences, vol. 5, no. 3, pp. 209–238, 1976.
  38. Wikipedia. Aerovironment switchblade. https://en.wikipedia.org/wiki/AeroVironment_Switchblade. Accessed May 17, 2024.
  39. Wikipedia . Raytheon coyote. https://en.wikipedia.org/wiki/Raytheon_Coyote. Accessed May 17, 2024.
  40. J. N. Yasin et al., “Unmanned aerial vehicles (UAVs): Collision avoidance systems and approaches,” IEEE Access, vol. 8, pp. 105 139–105 155, 2020.
  41. O. S. Oubbati, M. Atiquzzaman, A. Baz, H. Alhakami, and J. Ben-Othman, “Dispatch of UAVs for urban vehicular networks: A deep reinforcement learning approach,” IEEE Transactions on Vehicular Technology, vol. 70, no. 12, pp. 13 174–13 189, 2021.
  42. M. Alam, N. Ahmed, R. Matam, and F. A. Barbhuiya, “IEEE 802.11ah-enabled internet of drone architecture,” IEEE Internet of Things Magazine, vol. 5, no. 1, pp. 174–178, 2022.
  43. H. V. Abeywickrama, B. A. Jayawickrama, Y. He, and E. Dutkiewicz, “Comprehensive energy consumption model for unmanned aerial vehicles, based on empirical studies of battery performance,” IEEE Access, vol. 6, pp. 58 383–94, 2018.
  44. Y. Zeng and R. Zhang, “Energy-efficient UAV communication with trajectory optimization,” IEEE Trans. Wireless Commun., vol. 16, no. 6, pp. 3747–3760, 2017.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Shivam Garg (21 papers)
  2. Alexander Ihler (21 papers)
  3. Elizabeth Serena Bentley (9 papers)
  4. Sunil Kumar (86 papers)

Summary

We haven't generated a summary for this paper yet.