Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Spatio-Temporal Representation Learning as an Alternative to Traditional Glosses in Sign Language Translation and Production (2407.02854v2)

Published 3 Jul 2024 in cs.CL and cs.CV

Abstract: This work addresses the challenges associated with the use of glosses in both Sign Language Translation (SLT) and Sign Language Production (SLP). While glosses have long been used as a bridge between sign language and spoken language, they come with two major limitations that impede the advancement of sign language systems. First, annotating the glosses is a labor-intensive and time-consuming process, which limits the scalability of datasets. Second, the glosses oversimplify sign language by stripping away its spatio-temporal dynamics, reducing complex signs to basic labels and missing the subtle movements essential for precise interpretation. To address these limitations, we introduce Universal Gloss-level Representation (UniGloR), a framework designed to capture the spatio-temporal features inherent in sign language, providing a more dynamic and detailed alternative to the use of the glosses. The core idea of UniGloR is simple yet effective: We derive dense spatio-temporal representations from sign keypoint sequences using self-supervised learning and seamlessly integrate them into SLT and SLP tasks. Our experiments in a keypoint-based setting demonstrate that UniGloR either outperforms or matches the performance of previous SLT and SLP methods on two widely-used datasets: PHOENIX14T and How2Sign.

Citations (1)

Summary

We haven't generated a summary for this paper yet.