Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimization of End-to-End AoI in Edge-Enabled Vehicular Fog Systems: A Dueling-DQN Approach (2407.02815v2)

Published 3 Jul 2024 in cs.NI and eess.SP

Abstract: In real-time status update services for the Internet of Things (IoT), the timely dissemination of information requiring timely updates is crucial to maintaining its relevance. Failing to keep up with these updates results in outdated information. The age of information (AoI) serves as a metric to quantify the freshness of information. The Existing works to optimize AoI primarily focus on the transmission time from the information source to the monitor, neglecting the transmission time from the monitor to the destination. This oversight significantly impacts information freshness and subsequently affects decision-making accuracy. To address this gap, we designed an edge-enabled vehicular fog system to lighten the computational burden on IoT devices. We examined how information transmission and request-response times influence end-to-end AoI. As a solution, we proposed Dueling-Deep Queue Network (dueling-DQN), a deep reinforcement learning (DRL)-based algorithm and compared its performance with DQN policy and analytical results. Our simulation results demonstrate that the proposed dueling-DQN algorithm outperforms both DQN and analytical methods, highlighting its effectiveness in improving real-time system information freshness. Considering the complete end-to-end transmission process, our optimization approach can improve decision-making performance and overall system efficiency.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. S. Chen, T. Zhang, Z. Chen, Y. Dong, M. Wang, Y. Jia, and T. Q. Quek, “Minimizing age-upon-decisions in bufferless system: Service scheduling and decision interval,” IEEE Transactions on Vehicular Technology, vol. 72, no. 1, pp. 1017–1031, 2022.
  2. H. Menouar, I. Guvenc, K. Akkaya, A. S. Uluagac, A. Kadri, and A. Tuncer, “Uav-enabled intelligent transportation systems for the smart city: Applications and challenges,” IEEE Communications Magazine, vol. 55, no. 3, p. 22–28, Mar. 2017.
  3. M. Bisquert, E. Caselles, J. M. Sánchez, and V. Caselles, “Application of artificial neural networks and logistic regression to the prediction of forest fire danger in galicia using modis data,” International Journal of Wildland Fire, vol. 21, no. 8, pp. 1025–1029, 2012.
  4. Z. Xiong, H. Sheng, W. Rong, and D. E. Cooper, “Intelligent transportation systems for smart cities: a progress review,” Science China Information Sciences, vol. 55, pp. 2908–2914, 2012.
  5. S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should one update?” 2012Proceedings IEEE INFOCOM, Orlando, FL, USA, 2012, pp. 2731–2735, 2012.
  6. X. Chen, K. Gatsis, H. Hassani, and S. S. Bidokhti, “Age of information in random access channels,” IEEE Transactions on Information Theory, vol. 68, no. 10, pp. 6548–6568, 2022.
  7. X. Xie, H. Wang, and M. Weng, “A reinforcement learning approach for optimizing the age-of-computing-enabled iot,” IEEE Internet of Things Journal, vol. 9, no. 4, pp. 2778–2786, Feb.15, 2022.
  8. R. D. Yates and S. K. Kaul, “The age of information: Real-time status updating by multiple sources,” IEEE Transactions on Information Theory, vol. 65, no. 3, pp. 1807–1827, 2019.
  9. L. Hu, Z. Chen, Y. Dong, Y. Jia, L. Liang, and M. Wang, “Status update in iot networks: Age-of-information violation probability and optimal update rate,” IEEE Internet of Things Journal, vol. 8, no. 14, pp. 11 329–11 344, 2021.
  10. B. Kar, Y.-D. Lin, and Y.-C. Lai, “Cost optimization of omnidirectional offloading in two-tier cloud–edge federated systems,” Journal of Network and Computer Applications, vol. 215, p. 103630, 2023.
  11. F. G. Wakgra, B. Kar, S. B. Tadele, S.-H. Shen, and A. U. Khan, “Multi-objective offloading optimization in mec and vehicular-fog systems: A distributed-td3 approach,” IEEE Transactions on Intelligent Transportation Systems, 2024.
  12. Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge computing—a key technology towards 5g,” ETSI white paper, vol. 11, no. 11, pp. 1–16, 2015.
  13. B. Kar, K.-M. Shieh, Y.-C. Lai, Y.-D. Lin, and H.-W. Ferng, “Qos violation probability minimization in federating vehicular-fogs with cloud and edge systems,” IEEE Transactions on Vehicular Technology, vol. 70, no. 12, pp. 13 270–13 280, 2021.
  14. I. Sorkhoh, D. Ebrahimi, S. Sharafeddine, and C. Assi, “Minimizing the age of information in intelligent transportation systems,” 2020 IEEE 9th International Conference on Cloud Networking (CloudNet), Piscataway, NJ, USA, 2020, p. 2020, 2020.
  15. N. Keshari, D. Singh, and A. K. Maurya, “A survey on vehicular fog computing: Current state-of-the-art and future directions,” Vehicular Communications, vol. 38, p. 100512, 2022.
  16. Z. Chen, Q. Zeng, S. Chen, M. Li, M. Wang, Y. Jia, and T. Q. Quek, “Improving the timeliness of two-source status update systems in internet of vehicles with source-dedicated buffer: Resource allocation,” IEEE Transactions on Vehicular Technology, 2023.
  17. C. Xu, H. H. Yang, X. Wang, and T. Q. S. Quek, “Optimizing information freshness in computing-enabled iot networks,” IEEE Internet of Things Journal, vol. 7, no. 2, pp. 971–985, 2020.
  18. Q. Kuang, J. Gong, X. Chen, and X. Ma, “Analysis on computation-intensive status update in mobile edge computing,” IEEE Transactions on Vehicular Technology, vol. 69, no. 4, pp. 4353–4366, 2020.
  19. Y. Sun, E. Uysal-Biyikoglu, R. D. Yates, C. E. Koksal, and N. B. Shroff, “Update or wait: How to keep your data fresh,” IEEE Transactions on Information Theory, vol. 63, no. 11, pp. 7492–7508, 2017.
  20. D. Deng, Z. Chen, H. H. Yang, N. Pappas, L. Hu, M. Wang, Y. Jia, and T. Q. Quek, “Information freshness in a dual monitoring system,” in IEEE Global Communications Conference (GLOBECOM), 2022, pp. 4977–4982.
  21. Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas, “Dueling network architectures for deep reinforcement learning,” in International conference on machine learning.   PMLR, 2016, pp. 1995–2003.
  22. R. D. Yates and S. K. Kaul, “The age of information: Real-time status updating by multiple sources,” IEEE Transactions on Information Theory, vol. 65, no. 3, pp. 1807–1827, 2018.
  23. M. A. Abd-Elmagid and H. S. Dhillon, “Age of information in multi-source updating systems powered by energy harvesting,” IEEE Journal on Selected Areas in Information Theory, vol. 3, no. 1, pp. 98–112, 2022.
  24. Y. Liu, Z. Chang, G. Min, and S. Mao, “Average age of information in wireless powered mobile edge computing system,” IEEE Wireless Communications Letters, vol. 11, no. 8, pp. 1585–1589, 2022.
  25. Z. Li, L. Xiang, and X. Ge, “Age of information modeling and optimization for fast information dissemination in vehicular social networks,” IEEE Transactions on Vehicular Technology, vol. 71, no. 5, pp. 5445–5459, 2022.
  26. Z. Mlika and S. Cherkaoui, “Deep deterministic policy gradient to minimize the age of information in cellular v2x communications,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 12, pp. 23 597–23 612, 2022.
  27. S. Wang, M. Chen, Z. Yang, C. Yin, W. Saad, S. Cui, and H. V. Poor, “Distributed reinforcement learning for age of information minimization in real-time iot systems,” IEEE Journal of Selected Topics in Signal Processing, vol. 16, no. 3, pp. 501–515, 2022.
  28. L. Liu, K. Xiong, J. Cao, Y. Lu, P. Fan, and K. B. Letaief, “Average aoi minimization in uav-assisted data collection with rf wireless power transfer: A deep reinforcement learning scheme,” IEEE Internet of Things Journal, vol. 9, no. 7, pp. 5216–5228, 2022.
  29. X. Chen, C. Wu, T. Chen, H. Zhang, Z. Liu, Y. Zhang, and M. Bennis, “Age of information aware radio resource management in vehicular networks: A proactive deep reinforcement learning perspective,” IEEE Transactions on Wireless Communications, vol. 19, no. 4, pp. 2268–2281, 2020.
  30. C. E. Shannon, “A mathematical theory of communication,” The Bell system technical journal, vol. 27, no. 3, pp. 379–423, 1948.
  31. G. V. Weinberg and V. G. Glenny, “Optimal rayleigh approximation of the k-distribution via the kullback–leibler divergence,” IEEE Signal Processing Letters, vol. 23, no. 8, pp. 1067–1070, 2016.
  32. J. E. Shore, “Information theoretic approximations for m/g/1 and g/g/1 queuing systems,” Acta Informatica, vol. 17, pp. 43–61, 1982.
  33. N. Prabhu, “A bibliography of books and survey papers on queueing systems: Theory and applications,” Queueing Systems, vol. 2, no. 4, pp. 393–398, 1987.
  34. G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint arXiv:1606.01540, 2016.
  35. A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann, “Stable-baselines3: Reliable reinforcement learning implementations,” The Journal of Machine Learning Research, vol. 22, no. 1, pp. 12 348–12 355, 2021.
  36. M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: a system for large-scale machine learning.” in Osdi, vol. 16, no. 2016.   Savannah, GA, USA, 2016, pp. 265–283.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Seifu Birhanu Tadele (2 papers)
  2. Binayak Kar (7 papers)
  3. Frezer Guteta Wakgra (2 papers)
  4. Asif Uddin Khan (2 papers)

Summary

We haven't generated a summary for this paper yet.