Papers
Topics
Authors
Recent
2000 character limit reached

STL: Still Tricky Logic (for System Validation, Even When Showing Your Work)

Published 2 Jul 2024 in cs.HC and cs.FL | (2407.02632v1)

Abstract: As learned control policies become increasingly common in autonomous systems, there is increasing need to ensure that they are interpretable and can be checked by human stakeholders. Formal specifications have been proposed as ways to produce human-interpretable policies for autonomous systems that can still be learned from examples. Previous work showed that despite claims of interpretability, humans are unable to use formal specifications presented in a variety of ways to validate even simple robot behaviors. This work uses active learning, a standard pedagogical method, to attempt to improve humans' ability to validate policies in signal temporal logic (STL). Results show that overall validation accuracy is not high, at $65\% \pm 15\%$ (mean $\pm$ standard deviation), and that the three conditions of no active learning, active learning, and active learning with feedback do not significantly differ from each other. Our results suggest that the utility of formal specifications for human interpretability is still unsupported but point to other avenues of development which may enable improvements in system validation.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.