Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RVISA: Reasoning and Verification for Implicit Sentiment Analysis (2407.02340v1)

Published 2 Jul 2024 in cs.CL and cs.AI

Abstract: With an increasing social demand for fine-grained sentiment analysis (SA), implicit sentiment analysis (ISA) poses a significant challenge with the absence of salient cue words in expressions. It necessitates reliable reasoning to understand how the sentiment is aroused and thus determine implicit sentiments. In the era of LLMs, Encoder-Decoder (ED) LLMs have gained popularity to serve as backbone models for SA applications, considering impressive text comprehension and reasoning ability among diverse tasks. On the other hand, Decoder-only (DO) LLMs exhibit superior natural language generation and in-context learning capabilities. However, their responses may contain misleading or inaccurate information. To identify implicit sentiment with reliable reasoning, this study proposes RVISA, a two-stage reasoning framework that harnesses the generation ability of DO LLMs and the reasoning ability of ED LLMs to train an enhanced reasoner. Specifically, we adopt three-hop reasoning prompting to explicitly furnish sentiment elements as cues. The generated rationales are utilized to fine-tune an ED LLM into a skilled reasoner. Additionally, we develop a straightforward yet effective verification mechanism to ensure the reliability of the reasoning learning. We evaluated the proposed method on two benchmark datasets and achieved state-of-the-art results in ISA performance.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. R. Das and T. D. Singh, “Multimodal sentiment analysis: A survey of methods, trends, and challenges,” ACM Computing Surveys, vol. 55, pp. 1 – 38, 2023. [Online]. Available: https://api.semanticscholar.org/CorpusID:257233574
  2. J. Cui, Z. Wang, S.-B. Ho, and E. Cambria, “Survey on sentiment analysis: evolution of research methods and topics,” Artificial Intelligence Review, p. 8469–8510, Aug 2023. [Online]. Available: http://dx.doi.org/10.1007/s10462-022-10386-z
  3. I. Russo, T. Caselli, and C. Strapparava, “Semeval-2015 task 9: Clipeval implicit polarity of events,” in Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), Jan 2015. [Online]. Available: http://dx.doi.org/10.18653/v1/s15-2077
  4. Z. Li, Y. Zou, C. Zhang, Q. Zhang, and Z. Wei, “Learning implicit sentiment in aspect-based sentiment analysis with supervised contrastive pre-training,” in Conference on Empirical Methods in Natural Language Processing, 2021. [Online]. Available: https://api.semanticscholar.org/CorpusID:241032941
  5. H. Fei, B. Li, Q. Liu, L. Bing, F. Li, and T.-S. Chua, “Reasoning implicit sentiment with chain-of-thought prompting,” in Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), A. Rogers, J. Boyd-Graber, and N. Okazaki, Eds.   Toronto, Canada: Association for Computational Linguistics, Jul. 2023, pp. 1171–1182. [Online]. Available: https://aclanthology.org/2023.acl-short.101
  6. J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. H. Chi, Q. V. Le, and D. Zhou, “Chain-of-thought prompting elicits reasoning in large language models,” in Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022, S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, Eds., 2022. [Online]. Available: http://papers.nips.cc/paper\_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
  7. T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa, “Large language models are zero-shot reasoners,” in Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022, S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, Eds., 2022. [Online]. Available: http://papers.nips.cc/paper\_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
  8. J. Wei, M. Bosma, V. Y. Zhao, K. Guu, A. W. Yu, B. Lester, N. Du, A. M. Dai, and Q. V. Le, “Finetuned language models are zero-shot learners,” in The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.   OpenReview.net, 2022. [Online]. Available: https://openreview.net/forum?id=gEZrGCozdqR
  9. N. Ho, L. Schmid, and S. Yun, “Large language models are reasoning teachers,” in Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2023, Toronto, Canada, July 9-14, 2023, A. Rogers, J. L. Boyd-Graber, and N. Okazaki, Eds.   Association for Computational Linguistics, 2023, pp. 14 852–14 882. [Online]. Available: https://doi.org/10.18653/v1/2023.acl-long.830
  10. N. F. Rajani, B. McCann, C. Xiong, and R. Socher, “Explain yourself! leveraging language models for commonsense reasoning,” in Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Jan 2019. [Online]. Available: http://dx.doi.org/10.18653/v1/p19-1487
  11. C. Hsieh, C. Li, C. Yeh, H. Nakhost, Y. Fujii, A. Ratner, R. Krishna, C. Lee, and T. Pfister, “Distilling step-by-step! outperforming larger language models with less training data and smaller model sizes,” in Findings of the Association for Computational Linguistics: ACL 2023, Toronto, Canada, July 9-14, 2023, A. Rogers, J. L. Boyd-Graber, and N. Okazaki, Eds.   Association for Computational Linguistics, 2023, pp. 8003–8017. [Online]. Available: https://doi.org/10.18653/v1/2023.findings-acl.507
  12. W. Zhang, Y. Deng, B. Liu, S. J. Pan, and L. Bing, “Sentiment analysis in the era of large language models: A reality check,” CoRR, vol. abs/2305.15005, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2305.15005
  13. L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kelton, L. Miller, M. Simens, A. Askell, P. Welinder, P. F. Christiano, J. Leike, and R. Lowe, “Training language models to follow instructions with human feedback,” in Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022, S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, Eds., 2022. [Online]. Available: http://papers.nips.cc/paper\_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
  14. H. W. Chung, L. Hou, S. Longpre, B. Zoph, Y. Tay, W. Fedus, E. Li, X. Wang, M. Dehghani, S. Brahma, A. Webson, S. S. Gu, Z. Dai, M. Suzgun, X. Chen, A. Chowdhery, S. Narang, G. Mishra, A. Yu, V. Y. Zhao, Y. Huang, A. M. Dai, H. Yu, S. Petrov, E. H. Chi, J. Dean, J. Devlin, A. Roberts, D. Zhou, Q. V. Le, and J. Wei, “Scaling instruction-finetuned language models,” CoRR, vol. abs/2210.11416, 2022. [Online]. Available: https://doi.org/10.48550/arXiv.2210.11416
  15. C. Raffel, N. M. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer learning with a unified text-to-text transformer,” J. Mach. Learn. Res., vol. 21, pp. 140:1–140:67, 2019. [Online]. Available: https://api.semanticscholar.org/CorpusID:204838007
  16. Y. Tay, M. Dehghani, V. Q. Tran, X. Garcia, J. Wei, X. Wang, H. W. Chung, D. Bahri, T. Schuster, H. S. Zheng, D. Zhou, N. Houlsby, and D. Metzler, “UL2: unifying language learning paradigms,” in The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.   OpenReview.net, 2023. [Online]. Available: https://openreview.net/pdf?id=6ruVLB727MC
  17. L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin, Z. Li, D. Li, E. Xing, H. Zhang, J. E. Gonzalez, and I. Stoica, “Judging LLM-as-a-judge with MT-bench and chatbot arena,” in Thirty-seventh Conference on Neural Information Processing Systems Datasets and Benchmarks Track, 2023. [Online]. Available: https://openreview.net/forum?id=uccHPGDlao
  18. J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud, D. Yogatama, M. Bosma, D. Zhou, D. Metzler, E. H. Chi, T. Hashimoto, O. Vinyals, P. Liang, J. Dean, and W. Fedus, “Emergent abilities of large language models,” Trans. Mach. Learn. Res., vol. 2022, 2022. [Online]. Available: https://openreview.net/forum?id=yzkSU5zdwD
  19. M. Xu, D. Wang, S. Feng, Z. Yang, and Y. Zhang, “KC-ISA: An implicit sentiment analysis model combining knowledge enhancement and context features,” in Proceedings of the 29th International Conference on Computational Linguistics, N. Calzolari, C.-R. Huang, H. Kim, J. Pustejovsky, L. Wanner, K.-S. Choi, P.-M. Ryu, H.-H. Chen, L. Donatelli, H. Ji, S. Kurohashi, P. Paggio, N. Xue, S. Kim, Y. Hahm, Z. He, T. K. Lee, E. Santus, F. Bond, and S.-H. Na, Eds.   Gyeongju, Republic of Korea: International Committee on Computational Linguistics, Oct. 2022, pp. 6906–6915. [Online]. Available: https://aclanthology.org/2022.coling-1.601
  20. D. Zhou, J. Wang, L. Zhang, and Y. He, “Implicit sentiment analysis with event-centered text representation,” in Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, Jan 2021. [Online]. Available: http://dx.doi.org/10.18653/v1/2021.emnlp-main.551
  21. S. Wang, J. Zhou, C. Sun, J. Ye, T. Gui, Q. Zhang, and X. Huang, “Causal intervention improves implicit sentiment analysis,” in Proceedings of the 29th International Conference on Computational Linguistics, N. Calzolari, C.-R. Huang, H. Kim, J. Pustejovsky, L. Wanner, K.-S. Choi, P.-M. Ryu, H.-H. Chen, L. Donatelli, H. Ji, S. Kurohashi, P. Paggio, N. Xue, S. Kim, Y. Hahm, Z. He, T. K. Lee, E. Santus, F. Bond, and S.-H. Na, Eds.   Gyeongju, Republic of Korea: International Committee on Computational Linguistics, Oct. 2022, pp. 6966–6977. [Online]. Available: https://aclanthology.org/2022.coling-1.607
  22. J. Ouyang, Z. Yang, S. Liang, B. Wang, Y. Wang, and X. Li, “Aspect-based sentiment analysis with explicit sentiment augmentations,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 38, no. 17, pp. 18 842–18 850, Mar. 2024. [Online]. Available: https://ojs.aaai.org/index.php/AAAI/article/view/29849
  23. H. Peng, L. Xu, L. Bing, F. Huang, W. Lu, and L. Si, “Knowing what, how and why: A near complete solution for aspect-based sentiment analysis,” Proceedings of the AAAI Conference on Artificial Intelligence, p. 8600–8607, Jun 2020. [Online]. Available: http://dx.doi.org/10.1609/aaai.v34i05.6383
  24. T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are few-shot learners,” in Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., 2020. [Online]. Available: https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
  25. X. Wang, J. Wei, D. Schuurmans, Q. V. Le, E. H. Chi, S. Narang, A. Chowdhery, and D. Zhou, “Self-consistency improves chain of thought reasoning in language models,” in The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.   OpenReview.net, 2023. [Online]. Available: https://openreview.net/pdf?id=1PL1NIMMrw
  26. Y. Fu, H. Peng, A. Sabharwal, P. Clark, and T. Khot, “Complexity-based prompting for multi-step reasoning,” in The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.   OpenReview.net, 2023. [Online]. Available: https://openreview.net/pdf?id=yf1icZHC-l9
  27. Z. Zhang, A. Zhang, M. Li, and A. Smola, “Automatic chain of thought prompting in large language models,” in The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.   OpenReview.net, 2023. [Online]. Available: https://openreview.net/pdf?id=5NTt8GFjUHkr
  28. P. Hase, S. Zhang, H. Xie, and M. Bansal, “Leakage-adjusted simulatability: Can models generate non-trivial explanations of their behavior in natural language?” in Findings of the Association for Computational Linguistics: EMNLP 2020, T. Cohn, Y. He, and Y. Liu, Eds.   Online: Association for Computational Linguistics, Nov. 2020, pp. 4351–4367. [Online]. Available: https://aclanthology.org/2020.findings-emnlp.390
  29. O.-M. Camburu, T. Rocktäschel, T. Lukasiewicz, and P. Blunsom, “e-snli: Natural language inference with natural language explanations,” in Advances in Neural Information Processing Systems, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds., vol. 31.   Curran Associates, Inc., 2018. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2018/file/4c7a167bb329bd92580a99ce422d6fa6-Paper.pdf
  30. M. Jin, Q. Yu, D. Shu, H. Zhao, W. Hua, Y. Meng, Y. Zhang, and M. Du, “The impact of reasoning step length on large language models,” CoRR, vol. abs/2401.04925, 2024. [Online]. Available: https://doi.org/10.48550/arXiv.2401.04925
  31. S. Li, J. Chen, Y. Shen, Z. Chen, X. Zhang, Z. Li, H. Wang, J. Qian, B. Peng, Y. Mao, W. Chen, and X. Yan, “Explanations from large language models make small reasoners better,” CoRR, vol. abs/2210.06726, 2022. [Online]. Available: https://doi.org/10.48550/arXiv.2210.06726
  32. J. Huang, S. Gu, L. Hou, Y. Wu, X. Wang, H. Yu, and J. Han, “Large language models can self-improve,” in Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, H. Bouamor, J. Pino, and K. Bali, Eds.   Singapore: Association for Computational Linguistics, Dec. 2023, pp. 1051–1068. [Online]. Available: https://aclanthology.org/2023.emnlp-main.67
  33. E. Zelikman, Y. Wu, J. Mu, and N. Goodman, “Star: Bootstrapping reasoning with reasoning,” in Advances in Neural Information Processing Systems, S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, Eds., vol. 35.   Curran Associates, Inc., 2022, pp. 15 476–15 488. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2022/file/639a9a172c044fbb64175b5fad42e9a5-Paper-Conference.pdf
  34. L. C. Magister, J. Mallinson, J. Adamek, E. Malmi, and A. Severyn, “Teaching small language models to reason,” in Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), A. Rogers, J. Boyd-Graber, and N. Okazaki, Eds.   Toronto, Canada: Association for Computational Linguistics, Jul. 2023, pp. 1773–1781. [Online]. Available: https://aclanthology.org/2023.acl-short.151
  35. M. Pontiki, D. Galanis, J. Pavlopoulos, H. Papageorgiou, I. Androutsopoulos, and S. Manandhar, “Semeval-2014 task 4: Aspect based sentiment analysis,” in Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), Jan 2014. [Online]. Available: http://dx.doi.org/10.3115/v1/s14-2004
  36. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional transformers for language understanding,” in Proceedings of the 2019 Conference of the North, Jan 2019. [Online]. Available: http://dx.doi.org/10.18653/v1/n19-1423
  37. A. Rietzler, S. Stabinger, P. Opitz, and S. Engl, “Adapt or get left behind: Domain adaptation through bert language model finetuning for aspect-target sentiment classification,” in Proceedings of the 12th Language Resources and Evaluation Conference.   European Language Resources Association, 2020, p. 4933–4941.
  38. K. Wang, W. Shen, Y. Yang, X. Quan, and R. Wang, “Relational graph attention network for aspect-based sentiment analysis,” in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, D. Jurafsky, J. Chai, N. Schluter, and J. Tetreault, Eds.   Online: Association for Computational Linguistics, jul 2020, pp. 3229–3238. [Online]. Available: https://aclanthology.org/2020.acl-main.295

Summary

We haven't generated a summary for this paper yet.