Dual Bounded Generation: Polynomial, Second-order Cone and Positive Semidefinite Matrix Inequalities
Abstract: In the monotone integer dualization problem, we are given two sets of vectors in an integer box such that no vector in the first set is dominated by a vector in the second. The question is to check if the two sets of vectors cover the entire integer box by upward and downward domination, respectively. It is known that the problem is (quasi-)polynomially equivalent to that of enumerating all maximal feasible solutions of a given monotone system of linear/separable/supermodular inequalities over integer vectors. The equivalence is established via showing that the dual family of minimal infeasible vectors has size bounded by a (quasi-)polynomial in the sizes of the family to be generated and the input description. Continuing in this line of work, in this paper, we consider systems of polynomial, second-order cone, and semidefinite inequalities. We give sufficient conditions under which such bounds can be established and highlight some applications.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.