Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Counterfactual Data Augmentation with Denoising Diffusion for Graph Anomaly Detection (2407.02143v1)

Published 2 Jul 2024 in cs.LG and cs.SI

Abstract: A critical aspect of Graph Neural Networks (GNNs) is to enhance the node representations by aggregating node neighborhood information. However, when detecting anomalies, the representations of abnormal nodes are prone to be averaged by normal neighbors, making the learned anomaly representations less distinguishable. To tackle this issue, we propose CAGAD -- an unsupervised Counterfactual data Augmentation method for Graph Anomaly Detection -- which introduces a graph pointer neural network as the heterophilic node detector to identify potential anomalies whose neighborhoods are normal-node-dominant. For each identified potential anomaly, we design a graph-specific diffusion model to translate a part of its neighbors, which are probably normal, into anomalous ones. At last, we involve these translated neighbors in GNN neighborhood aggregation to produce counterfactual representations of anomalies. Through aggregating the translated anomalous neighbors, counterfactual representations become more distinguishable and further advocate detection performance. The experimental results on four datasets demonstrate that CAGAD significantly outperforms strong baselines, with an average improvement of 2.35% on F1, 2.53% on AUC-ROC, and 2.79% on AUC-PR.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (67)
  1. X. Ma, J. Wu, S. Xue, J. Yang, C. Zhou, Q. Z. Sheng, H. Xiong, and L. Akoglu, “A comprehensive survey on graph anomaly detection with deep learning,” IEEE Transactions on Knowledge and Data Engineering, vol. 35, no. 12, pp. 12 012–12 038, 2023.
  2. K. Liu, Y. Dou, Y. Zhao, X. Ding, X. Hu, R. Zhang, K. Ding, C. Chen, H. Peng, K. Shu et al., “Bond: Benchmarking unsupervised outlier node detection on static attributed graphs,” vol. 35, 2022, pp. 27 021–27 035.
  3. X. Shen, W. Lv, J. Qiu, A. Kaur, F. Xiao, and F. Xia, “Trust-aware detection of malicious users in dating social networks,” IEEE Transactions on Computational Social Systems, vol. 10, no. 5, pp. 2587–2598, 2023.
  4. Y. Yang, Y. Xu, Y. Sun, Y. Dong, F. Wu, and Y. Zhuang, “Mining fraudsters and fraudulent strategies in large-scale mobile social networks,” IEEE Transactions on Knowledge and Data Engineering, vol. 33, no. 1, pp. 169–179, 2021.
  5. J. Cui, C. Yan, and C. Wang, “Remember: Ranking metric embedding-based multicontextual behavior profiling for online banking fraud detection,” IEEE Transactions on Computational Social Systems, vol. 8, no. 3, pp. 643–654, 2021.
  6. W. Hu, Y. Yang, J. Wang, X. Huang, and Z. Cheng, “Understanding electricity-theft behavior via multi-source data,” in Proceedings of The Web Conference, 2020, pp. 2264–2274.
  7. H. Chen, H. Yin, T. Chen, Q. V. H. Nguyen, W.-C. Peng, and X. Li, “Exploiting centrality information with graph convolutions for network representation learning,” in IEEE International Conference on Data Engineering, 2019, pp. 590–601.
  8. K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural networks?” in International Conference on Learning Representations, 2019.
  9. P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, “Graph attention networks,” in International Conference on Learning Representations, 2018.
  10. J. Tang, J. Li, Z. Gao, and J. Li, “Rethinking graph neural networks for anomaly detection,” in International Conference on Machine Learning.   PMLR, 2022, pp. 21 076–21 089.
  11. Z. Chai, S. You, Y. Yang, S. Pu, J. Xu, H. Cai, and W. Jiang, “Can abnormality be detected by graph neural networks?” in International Joint Conference on Artificial Intelligence, 2022, pp. 1945–1951.
  12. Y. Dou, Z. Liu, L. Sun, Y. Deng, H. Peng, and P. S. Yu, “Enhancing graph neural network-based fraud detectors against camouflaged fraudsters,” in ACM International Conference on Information and Knowledge Management, 2020, pp. 315–324.
  13. Y. Liu, X. Ao, Z. Qin, J. Chi, J. Feng, H. Yang, and Q. He, “Pick and choose: a gnn-based imbalanced learning approach for fraud detection,” in Proceedings of The Web Conference, 2021, pp. 3168–3177.
  14. Z. Liu, Y. Dou, P. S. Yu, Y. Deng, and H. Peng, “Alleviating the inconsistency problem of applying graph neural network to fraud detection,” in ACM SIGIR Conference on Research and Development in Information Retrieval, 2020, pp. 1569–1572.
  15. D. Wang, J. Lin, P. Cui, Q. Jia, Z. Wang, Y. Fang, Q. Yu, J. Zhou, S. Yang, and Y. Qi, “A semi-supervised graph attentive network for financial fraud detection,” in SIAM International Conference on Data Mining, 2019, pp. 598–607.
  16. L. Cui, H. Seo, M. Tabar, F. Ma, S. Wang, and D. Lee, “Deterrent: Knowledge guided graph attention network for detecting healthcare misinformation,” in Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2020, pp. 492–502.
  17. C. Liu, L. Sun, X. Ao, J. Feng, Q. He, and H. Yang, “Intention-aware heterogeneous graph attention networks for fraud transactions detection,” in Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2021, pp. 3280–3288.
  18. G. Pang, C. Shen, L. Cao, and A. V. D. Hengel, “Deep learning for anomaly detection: A review,” ACM Computing Surveys, vol. 54, no. 2, pp. 1–38, 2021.
  19. D. He, C. Liang, H. Liu, M. Wen, P. Jiao, and Z. Feng, “Block modeling-guided graph convolutional neural networks,” in AAAI Conference on Artificial Intelligence, 2022, pp. 4022–4029.
  20. T. Yang, Y. Wang, Z. Yue, Y. Yang, Y. Tong, and J. Bai, “Graph pointer neural networks,” in AAAI Conference on Artificial Intelligence, 2022, pp. 8832–8839.
  21. J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” in Neural Information Processing Systems, 2020, pp. 6840–6851.
  22. Y. Zhu, Y. Xu, F. Yu, Q. Liu, S. Wu, and L. Wang, “Graph contrastive learning with adaptive augmentation,” in Proceedings of The Web Conference, 2021, pp. 2069–2080.
  23. Y. Zheng, M. Jin, Y. Liu, L. Chi, K. T. Phan, and Y.-P. P. Chen, “Generative and contrastive self-supervised learning for graph anomaly detection,” IEEE Transactions on Knowledge & Data Engineering, vol. 35, no. 12, pp. 12 220–12 233, 2023.
  24. J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep unsupervised learning using nonequilibrium thermodynamics,” in International Conference on Machine Learning, 2015, pp. 2256–2265.
  25. Z. Xiao, K. Kreis, and A. Vahdat, “Tackling the generative learning trilemma with denoising diffusion gans,” in International Conference on Learning Representations, 2022.
  26. Q. Gao, F. Zhou, K. Zhang, F. Zhang, and G. Trajcevski, “Adversarial human trajectory learning for trip recommendation,” IEEE Transactions on Neural Networks and Learning Systems, vol. 34, no. 4, pp. 1764–1776, 2023.
  27. T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,” arXiv:1609.02907, 2016.
  28. C. Meng, Y. Song, J. Song, J. Wu, J.-Y. Zhu, and S. Ermon, “Sdedit: Image synthesis and editing with stochastic differential equations,” in International Conference on Learning Representations, 2022.
  29. A. Sinha, J. Song, C. Meng, and S. Ermon, “D2c: Diffusion-decoding models for few-shot conditional generation,” Neural Information Processing Systems, pp. 12 533–12 548, 2021.
  30. C. Xiao, Z. Gou, W. Tai, K. Zhang, and F. Zhou, “Imputation-based time-series anomaly detection with conditional weight-incremental diffusion models,” in Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2023, pp. 2742–2751.
  31. X. Xu, F. Zhou, K. Zhang, and S. Liu, “Ccgl: Contrastive cascade graph learning,” IEEE Transactions on Knowledge and Data Engineering, vol. 35, no. 5, pp. 4539–4554, 2022.
  32. P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-Rad, “Collective classification in network data,” AI Magazine, vol. 29, no. 3, pp. 93–93, 2008.
  33. J. J. McAuley and J. Leskovec, “From amateurs to connoisseurs: modeling the evolution of user expertise through online reviews,” in Proceedings of The Web Conference, 2013, pp. 897–908.
  34. S. Rayana and L. Akoglu, “Collective opinion spam detection: Bridging review networks and metadata,” in Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2015, pp. 985–994.
  35. W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large graphs,” in Advances in Neural Information Processing Systems, 2017, p. 1025–1035.
  36. B. Xu, H. Shen, Q. Cao, Y. Qiu, and X. Cheng, “Graph wavelet neural network,” in International Conference on Learning Representations, 2019.
  37. S. Liu, R. Ying, H. Dong, L. Li, T. Xu, Y. Rong, P. Zhao, J. Huang, and D. Wu, “Local augmentation for graph neural networks,” in International Conference on Machine Learning, 2022, pp. 14 054–14 072.
  38. Y. Gao, X. Wang, X. He, Z. Liu, H. Feng, and Y. Zhang, “Addressing heterophily in graph anomaly detection: A perspective of graph spectrum,” in Proceedings of the ACM Web Conference, 2023, pp. 1528–1538.
  39. L. He, G. Xu, S. Jameel, X. Wang, and H. Chen, “Graph-aware deep fusion networks for online spam review detection,” IEEE Transactions on Computational Social Systems, vol. 10, no. 5, pp. 2557–2565, 2023.
  40. X. Li, C. Xiao, Z. Feng, S. Pang, W. Tai, and F. Zhou, “Controlled graph neural networks with denoising diffusion for anomaly detection,” Expert Systems with Applications, vol. 237, p. 121533, 2024.
  41. K. Ding, J. Li, R. Bhanushali, and H. Liu, “Deep anomaly detection on attributed networks,” in SIAM International Conference on Data Mining, 2019, pp. 594–602.
  42. X. Luo, J. Wu, A. Beheshti, J. Yang, X. Zhang, Y. Wang, and S. Xue, “Comga: Community-aware attributed graph anomaly detection,” in Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, 2022, pp. 657–665.
  43. J. Zhang, S. Wang, and S. Chen, “Reconstruction enhanced multi-view contrastive learning for anomaly detection on attributed networks,” in Proceedings of the International Joint Conference on Artificial Intelligence, 2022, pp. 2376–2382.
  44. K. Ding, Q. Zhou, H. Tong, and H. Liu, “Few-shot network anomaly detection via cross-network meta-learning,” in Proceedings of The Web Conference, 2021, pp. 2448–2456.
  45. L. Ruff, R. A. Vandermeulen, N. Görnitz, A. Binder, E. Müller, K. Müller, and M. Kloft, “Deep semi-supervised anomaly detection,” in International Conference on Learning Representations, 2020.
  46. A. Kumagai, T. Iwata, and Y. Fujiwara, “Semi-supervised anomaly detection on attributed graphs,” in International Joint Conference on Neural Networks, 2021, pp. 1–8.
  47. S. Zhou, X. Huang, N. Liu, Q. Tan, and F.-L. Chung, “Unseen anomaly detection on networks via multi-hypersphere learning,” in SIAM International Conference on Data Mining, 2022, pp. 262–270.
  48. K. Ding, Z. Xu, H. Tong, and H. Liu, “Data augmentation for deep graph learning: A survey,” ACM SIGKDD Explorations Newsletter, vol. 24, no. 2, p. 61–77, 2022.
  49. T. Zhao, Y. Liu, L. Neves, O. Woodford, M. Jiang, and N. Shah, “Data augmentation for graph neural networks,” in AAAI Conference on Artificial Intelligence, 2021, pp. 11 015–11 023.
  50. Y. Rong, W. Huang, T. Xu, and J. Huang, “Dropedge: Towards deep graph convolutional networks on node classification,” in International Conference on Learning Representations, 2020.
  51. C. Zheng, B. Zong, W. Cheng, D. Song, J. Ni, W. Yu, H. Chen, and W. Wang, “Robust graph representation learning via neural sparsification,” in International Conference on Machine Learning, 2020, pp. 11 458–11 468.
  52. D. Luo, W. Cheng, W. Yu, B. Zong, J. Ni, H. Chen, and X. Zhang, “Learning to drop: Robust graph neural network via topological denoising,” in The International Conference on Web Search and Data Mining, 2021, pp. 779–787.
  53. Y. Liu, Z. Li, S. Pan, C. Gong, C. Zhou, and G. Karypis, “Anomaly detection on attributed networks via contrastive self-supervised learning,” IEEE Transactions on Neural Networks and Learning Systems, vol. 33, no. 6, pp. 2378–2392, 2022.
  54. K. Kong, G. Li, M. Ding, Z. Wu, C. Zhu, B. Ghanem, G. Taylor, and T. Goldstein, “Robust optimization as data augmentation for large-scale graphs,” in IEEE Conference on Computer Vision and Pattern Recognition, 2022, pp. 60–69.
  55. J. Ma, R. Guo, M. Wan, L. Yang, A. Zhang, and J. Li, “Learning fair node representations with graph counterfactual fairness,” in The International Conference on Web Search and Data Mining, 2022, pp. 695–703.
  56. T. Zhao, G. Liu, D. Wang, W. Yu, and M. Jiang, “Learning from counterfactual links for link prediction,” in International Conference on Machine Learning, 2022, pp. 26 911–26 926.
  57. C. Xiao, X. Xu, Y. Lei, K. Zhang, S. Liu, and F. Zhou, “Counterfactual graph learning for anomaly detection on attributed networks,” IEEE Transactions on Knowledge and Data Engineering, vol. 35, no. 10, pp. 10 540–10 553, 2023.
  58. Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, “Score-based generative modeling through stochastic differential equations,” in International Conference on Learning Representations, 2021.
  59. T. Dockhorn, A. Vahdat, and K. Kreis, “Score-based generative modeling with critically-damped langevin diffusion,” in International Conference on Learning Representations, 2022.
  60. C. Saharia, J. Ho, W. Chan, T. Salimans, D. J. Fleet, and M. Norouzi, “Image super-resolution via iterative refinement,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 4, pp. 4713–4726, 2022.
  61. H. Li, Y. Yang, M. Chang, S. Chen, H. Feng, Z. Xu, Q. Li, and Y. Chen, “Srdiff: Single image super-resolution with diffusion probabilistic models,” Neurocomputing, vol. 479, pp. 47–59, 2022.
  62. H. Sasaki, C. G. Willcocks, and T. P. Breckon, “Unit-ddpm: Unpaired image translation with denoising diffusion probabilistic models,” arXiv:2104.05358, 2021.
  63. N. Chen, Y. Zhang, H. Zen, R. J. Weiss, M. Norouzi, and W. Chan, “Wavegrad: Estimating gradients for waveform generation,” in International Conference on Learning Representations, 2021.
  64. M. W. Lam, J. Wang, D. Su, and D. Yu, “Bddm: Bilateral denoising diffusion models for fast and high-quality speech synthesis,” in International Conference on Learning Representations, 2022.
  65. V. Popov, I. Vovk, V. Gogoryan, T. Sadekova, M. Kudinov, and J. Wei, “Diffusion-based voice conversion with fast maximum likelihood sampling scheme,” in International Conference on Learning Representations, 2022.
  66. L. Zhou, Y. Du, and J. Wu, “3d shape generation and completion through point-voxel diffusion,” in International Conference on Computer Vision, 2021, pp. 5826–5835.
  67. K. Rasul, C. Seward, I. Schuster, and R. Vollgraf, “Autoregressive denoising diffusion models for multivariate probabilistic time series forecasting,” in International Conference on Machine Learning, 2021, pp. 8857–8868.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Chunjing Xiao (4 papers)
  2. Shikang Pang (2 papers)
  3. Xovee Xu (5 papers)
  4. Xuan Li (129 papers)
  5. Goce Trajcevski (11 papers)
  6. Fan Zhou (111 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.