Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

TIGER: A Generating-Then-Ranking Framework for Practical Python Type Inference (2407.02095v3)

Published 2 Jul 2024 in cs.SE

Abstract: Python's dynamic typing system offers flexibility and expressiveness but can lead to type-related errors, prompting the need for automated type inference to enhance type hinting. While existing learning-based approaches show promising inference accuracy, they struggle with practical challenges in comprehensively handling various types, including complex generic types and (unseen) user-defined types. In this paper, we introduce TIGER, a two-stage generating-then-ranking (GTR) framework, designed to effectively handle Python's diverse type categories. TIGER leverages fine-tuned pre-trained code models to train a generative model with a span masking objective and a similarity model with a contrastive training objective. This approach allows TIGER to generate a wide range of type candidates, including complex generics in the generating stage, and accurately rank them with user-defined types in the ranking stage. Our evaluation on the ManyTypes4Py dataset shows TIGER's advantage over existing methods in various type categories, notably improving accuracy in inferring user-defined and unseen types by 11.2% and 20.1% respectively in Top-5 Exact Match. Moreover, the experimental results not only demonstrate TIGER's superior performance and efficiency, but also underscore the significance of its generating and ranking stages in enhancing automated type inference.

Citations (3)

Summary

We haven't generated a summary for this paper yet.