Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universal Plans: One Action Sequence to Solve Them All! (2407.02090v2)

Published 2 Jul 2024 in cs.RO, math.CO, and math.NT

Abstract: This paper introduces the notion of a universal plan, which when executed, is guaranteed to solve all planning problems in a category, regardless of the obstacles, initial state, and goal set. Such plans are specified as a deterministic sequence of actions that are blindly applied without any sensor feedback. Thus, they can be considered as pure exploration in a reinforcement learning context, and we show that with basic memory requirements, they even yield optimal plans. Building upon results in number theory and theory of automata, we provide universal plans both for discrete and continuous (motion) planning and prove their (semi)completeness. The concepts are applied and illustrated through simulation studies, and several directions for future research are sketched.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (48)
  1. Random walks, universal traversal sequences, and the complexity of maze problems. IEEE, 20 edition, oct 1979.
  2. Walking on real numbers. The Mathematical Intelligencer, 35:42–60, 2013.
  3. PI: the next generation. 2016.
  4. Random generators and normal numbers. Experimental Mathematics, 11(4):527–546, 2002.
  5. Bounds on universal sequences. SIAM Journal on Computing, 18(2):268–277, 1989.
  6. A random sampling scheme for robot path planning. In G. Giralt and G. Hirzinger, editors, Proceedings International Symposium on Robotics Research, pages 249–264. Springer-Verlag, New York, 1996.
  7. J. Barraquand and J.-C. Latombe. A Monte-Carlo algorithm for path planning with many degrees of freedom. In Proceedings IEEE International Conference on Robotics & Automation, pages 1712–1717, 1990.
  8. Normal numbers and finite automata. Theoretical Computer Science, 477:109–116, 2013.
  9. Deterministic functions on amenable semigroups and a generalization of the kamae-weiss theorem on normality preservation. Journal D’analyse Mathématique, 148(1):213–286, 2022.
  10. V. Bergelson and J. Vandehey. A hot spot proof of the generalized wall theorem. The American Mathematical Monthly, 126(10):876–890, 2019.
  11. M. Blum and D. Kozen. On the power of the compass (or, why mazes are easier to search than graphs). In Proceedings Annual Symposium on Foundations of Computer Science, pages 132–142, 1978.
  12. M. E. Borel. Les probabilités dénombrables et leurs applications arithmétiques. Rend. Circ. Mat. Palermo, 27(1):247–271, 1884–1940.
  13. M. F. Bridgland. Universal traversal sequences for paths and cycles. Journal of Algorithms, 8(3):395–404, 1987.
  14. L. Budach. Environments, labyrinths, and automata. In Karpiński, editor, Fundamentals of Computation Theory, pages 54–64. Springer Verlag, 1977.
  15. L. Budach. Automata and labyrinths. Math. Nachrichten, 86:195–282, 1978.
  16. Y. Bugeaud. Distribution Modulo One and Diophantine Approximation. Cambridge University Press, 2012.
  17. C. S. Calude. Information and Randomness: An Algorithmic Perspective. Springer, 2nd edition, 2002.
  18. D. G. Champernowne. The construction of decimals normal in the scale of ten. Journal of the London Mathematical Society, s1-8(4):254–260, 10 1933.
  19. Label-guided graph exploration by a finite automaton. ACM Transactions on Algorithms, 4(4):1–18, August 2008.
  20. K. J. Compton. On rich words. In L. J. Cummings, editor, Combinatorics on words, pages 39–61. Academic Press, 1983.
  21. Every good regulator of a system must be a model of that system. International Journal of Systems Science, 1(2):89–97, 1970.
  22. A. H. Copeland and P. Erdős. Note on normal numbers. Bull. Am. Math. Soc., 52:857—860, 1946.
  23. Tree exploration with little memory. Journal of Algorithms, 51(1):38–63, 2004.
  24. M. A. Erdmann. Randomization in robot tasks. IJRR, 11(5):399–436, Oct 1992.
  25. Graph exploration by a finite automaton. Theoretical Computer Science, 345(2-3):331–344, December 2005.
  26. P. Hertling. Disjunctive ω𝜔\omegaitalic_ω-words and real numbers. J. of Universal Computer Science, 2(7):549–568, 1996.
  27. S. Hoffmann. Completely distinguishable automata and the set of synchronizing words, page 128–142. 2023.
  28. A true random number generator based on mouse movement and chaotic cryptography. Chaos, Solitons and Fractals, 40(5):2286–2293, 2009.
  29. Rudolph E. Kalman. Randomness reexamined. Modeling, Identification and Control, 15(3):141–151, 1994.
  30. T. Kamae. Subsequences of normal sequences. Israel Journal of Mathematics, 16(2):121–149, 1973.
  31. L. Kuipers and H. Niederreiter. Uniform distribution of sequences. Wiley-Interscience Publ., 1974.
  32. S. M. LaValle. Planning Algorithms. Cambridge University Press, Cambridge, U.K., 2006. Also available at http://lavalle.pl/planning/.
  33. On the relationship between classical grid search and probabilistic roadmaps. International Journal of Robotics Research, 23(7/8):673–692, July/August 2004.
  34. M. Li and P. Vitányi. An Introduction to Kolmogorov Complexity and Its Applications. Springer-Verlag, 2019.
  35. J. H. Lutz and E. Mayordomo. Computing absolutely normal numbers in nearly linear time. Information and Computation, 281:104746, 2021.
  36. B. K. Natarajan. An algorithmic approach to the automated design of parts orienters. In 27th Annual Symposium on Foundations of Computer Science (sfcs 1986), pages 132–142, 1986.
  37. Localization with limited sensing. IEEE Transactions on Robotics, 23(4):704–716, August 2007.
  38. J. Rataj and M. Zähle. Curvature Measures of Singular Sets. Springer International Publishing, 2019. Chapter 4: Sets with Positive reach.
  39. Inference of finite automata using homing sequences. Information and Computation, 103(2):299–347, 1993.
  40. Diversity-based inference of finite automata. Journal of the Association for Computing Machinery, 41(3):555–589, 1994.
  41. Sven Sandberg. Homing and synchronizing sequences. In Model-Based Testing of Reactive Systems, 2004.
  42. R. Stoneham. Normal recurring decimals, normal periodic systems, (j,ε)𝑗𝜀(j,\varepsilon)( italic_j , italic_ε )-normality, and normal numbers. Acta Arithmetica, 28:349—361, 1976.
  43. H. Takahashi. Algorithmic analogies to Kamae-Weiss theorem on normal numbers, page 411–416. 2013.
  44. Recommendation for the entropy sources used for random bit generation. NIST Special Publication 800-90B, 2018.
  45. Joseph Vandehey. Uncanny subsequence selections that generate normal numbers. Uniform Distribution Theory, 12(2):65–75, 2017.
  46. M. V. Volkov. Synchronizing Automata and the Černý Conjecture, page 11–27. 2008.
  47. B. Weiss. Normal sequences as collectives. In Prof. Conf. on Ergodic Theory and Topological Dynamics, pages 79–80, Lexington, KY: Mathematics Department, Univ. of Kentucky, 1971.
  48. B. Weiss. Single orbit Dynamics. Number 95. Amer. Math. Soc, 1999.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com