Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Empirical Determination of Baseball Eras: Multivariate Changepoint Analysis in Major League Baseball (2407.01797v2)

Published 1 Jul 2024 in stat.AP

Abstract: We use multivariate change point analysis methods, to identify not only mean shifts but also changes in variance across a wide array of statistical time series. Our primary objective is to empirically discern distinct eras in the evolution of baseball, shedding light on significant transformations in team performance and management strategies. We leverage a rich dataset comprising baseball statistics from the late 1800s to 2020, spanning over a century of the sport's history. Results confirm previous historical research, pinpointing well-known baseball eras, such as the Dead Ball Era, Integration Era, Steroid Era, and Post-Steroid Era. Moreover, the study delves into the detection of substantial changes in team performance, effectively identifying periods of both dynasties and collapses within a team's history. The multivariate change point analysis proves to be a valuable tool for understanding the intricate dynamics of baseball's evolution. The method offers a data-driven approach to unveil structural shifts in the sport's historical landscape, providing fresh insights into the impact of rule changes, player strategies, and external factors on baseball's evolution. This not only enhances our comprehension of baseball, showing more robust identification of eras than past univariate time series work, but also showcases the broader applicability of multivariate change point analysis in the domain of sports research and beyond.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com