Papers
Topics
Authors
Recent
Search
2000 character limit reached

Ground Every Sentence: Improving Retrieval-Augmented LLMs with Interleaved Reference-Claim Generation

Published 1 Jul 2024 in cs.CL | (2407.01796v2)

Abstract: Retrieval-Augmented Generation (RAG) has been widely adopted to enhance LLMs in knowledge-intensive tasks. To enhance credibility and verifiability in RAG systems, Attributed Text Generation (ATG) is proposed, which provides citations to retrieval knowledge in LLM-generated responses. Prior methods mainly adopt coarse-grained attributions, with passage-level or paragraph-level references or citations, which fall short in verifiability. This paper proposes ReClaim (Refer & Claim), a fine-grained ATG method that alternates the generation of references and answers step by step. Different from previous coarse-grained attribution, ReClaim provides sentence-level citations in long-form question-answering tasks. With extensive experiments, we verify the effectiveness of ReClaim in extensive settings, achieving a citation accuracy rate of 90%.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 9 likes about this paper.