Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Deep Generative Framework for Joint Households and Individuals Population Synthesis (2407.01643v1)

Published 30 Jun 2024 in cs.LG and cs.CY

Abstract: Household and individual-level sociodemographic data are essential for understanding human-infrastructure interaction and policymaking. However, the Public Use Microdata Sample (PUMS) offers only a sample at the state level, while census tract data only provides the marginal distributions of variables without correlations. Therefore, we need an accurate synthetic population dataset that maintains consistent variable correlations observed in microdata, preserves household-individual and individual-individual relationships, adheres to state-level statistics, and accurately represents the geographic distribution of the population. We propose a deep generative framework leveraging the variational autoencoder (VAE) to generate a synthetic population with the aforementioned features. The methodological contributions include (1) a new data structure for capturing household-individual and individual-individual relationships, (2) a transfer learning process with pre-training and fine-tuning steps to generate households and individuals whose aggregated distributions align with the census tract marginal distribution, and (3) decoupled binary cross-entropy (D-BCE) loss function enabling distribution shift and out-of-sample records generation. Model results for an application in Delaware, USA demonstrate the ability to ensure the realism of generated household-individual records and accurately describe population statistics at the census tract level compared to existing methods. Furthermore, testing in North Carolina, USA yielded promising results, supporting the transferability of our method.

Summary

We haven't generated a summary for this paper yet.