Papers
Topics
Authors
Recent
Search
2000 character limit reached

Multifidelity Cross-validation

Published 1 Jul 2024 in stat.CO and stat.ML | (2407.01495v1)

Abstract: Emulating the mapping between quantities of interest and their control parameters using surrogate models finds widespread application in engineering design, including in numerical optimization and uncertainty quantification. Gaussian process models can serve as a probabilistic surrogate model of unknown functions, thereby making them highly suitable for engineering design and decision-making in the presence of uncertainty. In this work, we are interested in emulating quantities of interest observed from models of a system at multiple fidelities, which trade accuracy for computational efficiency. Using multifidelity Gaussian process models, to efficiently fuse models at multiple fidelities, we propose a novel method to actively learn the surrogate model via leave-one-out cross-validation (LOO-CV). Our proposed multifidelity cross-validation (\texttt{MFCV}) approach develops an adaptive approach to reduce the LOO-CV error at the target (highest) fidelity, by learning the correlations between the LOO-CV at all fidelities. \texttt{MFCV} develops a two-step lookahead policy to select optimal input-fidelity pairs, both in sequence and in batches, both for continuous and discrete fidelity spaces. We demonstrate the utility of our method on several synthetic test problems as well as on the thermal stress analysis of a gas turbine blade.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We found no open problems mentioned in this paper.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 3 likes about this paper.