Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Investigating the potential of Sparse Mixtures-of-Experts for multi-domain neural machine translation (2407.01126v1)

Published 1 Jul 2024 in cs.CL and cs.AI

Abstract: We focus on multi-domain Neural Machine Translation, with the goal of developing efficient models which can handle data from various domains seen during training and are robust to domains unseen during training. We hypothesize that Sparse Mixture-of-Experts (SMoE) models are a good fit for this task, as they enable efficient model scaling, which helps to accommodate a variety of multi-domain data, and allow flexible sharing of parameters between domains, potentially enabling knowledge transfer between similar domains and limiting negative transfer. We conduct a series of experiments aimed at validating the utility of SMoE for the multi-domain scenario, and find that a straightforward width scaling of Transformer is a simpler and surprisingly more efficient approach in practice, and reaches the same performance level as SMoE. We also search for a better recipe for robustness of multi-domain systems, highlighting the importance of mixing-in a generic domain, i.e. Paracrawl, and introducing a simple technique, domain randomization.

Summary

We haven't generated a summary for this paper yet.