Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mittag-Leffler stability of complete monotonicity-preserving schemes for time-dependent coefficients sub-diffusion equations (2407.00893v1)

Published 1 Jul 2024 in math.NA and cs.NA

Abstract: A key characteristic of the anomalous sub-solution equation is that the solution exhibits algebraic decay rate over long time intervals, which is often refered to the Mittag-Leffler type stability. For a class of power nonlinear sub-diffusion models with variable coefficients, we prove that their solutions have Mittag-Leffler stability when the source functions satisfy natural decay assumptions. That is the solutions have the decay rate $|u(t)|{L{s}(\Omega)}=O\left( t{-(\alpha+\beta)/\gamma} \right)$ as $t\rightarrow\infty$, where $\alpha$, $\gamma$ are positive constants, $\beta\in(-\alpha,\infty)$ and $s\in (1,\infty)$. Then we develop the structure preserving algorithm for this type of model. For the complete monotonicity-preserving ($\mathcal{CM}$-preserving) schemes developed by Li and Wang (Commun. Math. Sci., 19(5):1301-1336, 2021), we prove that they satisfy the discrete comparison principle for time fractional differential equations with variable coefficients. Then, by carefully constructing the fine the discrete supsolution and subsolution, we obtain the long time optimal decay rate of the numerical solution $|u{n}|{L{s}(\Omega)}=O\left( t_n{-(\alpha+\beta)/\gamma} \right)$ as $t{n}\rightarrow\infty$, which is fully agree with the theoretical solution. Finally, we validated the analysis results through numerical experiments.

Summary

We haven't generated a summary for this paper yet.