Papers
Topics
Authors
Recent
2000 character limit reached

A posteriori error estimator for elliptic interface problems in the fictitious formulation

Published 30 Jun 2024 in math.NA and cs.NA | (2407.00786v1)

Abstract: A posteriori error estimator is derived for an elliptic interface problem in the fictitious domain formulation with distributed Lagrange multiplier considering a discontinuous Lagrange multiplier finite element space. A posteriori error estimation plays a pivotal role in assessing the accuracy and reliability of computational solutions across various domains of science and engineering. This study delves into the theoretical underpinnings and computational considerations of a residual-based estimator. Theoretically, the estimator is studied for cases with constant coefficients which jump across an interface as well as generalized scenarios with smooth coefficients that jump across an interface. Theoretical findings demonstrate the reliability and efficiency of the proposed estimators under all considered cases. Numerical experiments are conducted to validate the theoretical results, incorporating various immersed geometries and instances of high coefficients jumps at the interface. Leveraging an adaptive algorithm, the estimator identifies regions with singularities and applies refinement accordingly. Results substantiate the theoretical findings, highlighting the reliability and efficiency of the estimators. Furthermore, numerical solutions exhibit optimal convergence properties, demonstrating resilience against geometric singularities or coefficients jumps.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.